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PREFACE

T his book is about the modes of single- and few-mode optical
waveguides with an emphasis on single-core and multicore opti-
cal fibers and couplers including a large range of geometries and
anisotropies, both standard and exotic. It provides both an “atlas”
of modal field forms and an understanding of the physical proper-
ties resulting from waveguide symmetries. In addition to optical
waveguide and fiber-optic designers, researchers, and students,
this book may appeal to quantum and solid-state chemists and
physicists interested in the application by analogy of techniques
they know well in the continually expanding field of photonics.

To aid in rapid understanding, we emphasize a building-block
approach with approximate modes and simplified structures form-
ing a basis for more exact analyses and more complex structures.
Accordingly we commence with single-core fibers and the symme-
try consequences arising from specific forms of the azimuthal and
radial dependence of the index profile.

The mathematical tools involve (1) the weak-guidance per-
turbation formalism facilitating the incorporation of polarization
effects following a scalar analysis together with (2) a group theo-
retic approach for systematic exploitation of symmetry.

Scalar modes provide a basis for vector modes. Field construc-
tions for transverse and hybrid polarized modes in terms of both
linearly and circularly polarized modes are given. Degeneracy split-
tings and vector mode field transformations are considered depend-
ing on the relative strengths of the refractive index profile height
and deformations from a circular cross section (e.g., elliptical, trian-
gular, square) or birefringence (linear, radial or azimuthal, circular).
Both microscopic and macroscopic anisotropies are considered: The
polarization effects arising from a single interface may be regarded
as a macroscopic manifestation of form birefringence. Single-core
results are then used as a building block in the analysis arrays of
few-mode lightguides: multicore fibers and multifiber couplers.

The organization of material is as follows:

= Chapter 1 provides an introduction including a motivation
for the study of waveguide mode forms.

= Chapter 2 starts from the fundamental Maxwell equations
for electrically anisotropic and isotropic media to provide a
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comprehensive treatment of the resulting wave equations.
For longitudinally invariant optical waveguides, it empha-
sizes the weak-guidance formalism which in general leads
to perturbation expansion in terms of the typically small
fractional refractive index difference between the wave-
guide core and cladding.

= Chapter 3 considers the scalar and vector modes of circular
optical fibers. It includes a tutorial introduction to the con-
sequences of symmetry, using a group theoretic approach
in degeneracy determination and field construction of dif-
ferent modes of circularly symmetric fibers.

= Chapter 4 examines elliptical, triangular, and square defor-
mations of circular waveguide cross sections as illustrations
of the modal degeneracy splitting and field transformation
resulting when the azimuthal circular symmetry is lowered
to n-fold rotation-reflection symmetry.

» Chapter 5 considers linearly, radially, and circularly bire-
fringent (gyrotropic) fibers.

= Chapter 6 is devoted to the construction of modes of multi-
core fibers and multifiber coupler arrays.

= Chapter 7 provides a summary of the results and discusses
extensions of the concept of modes for longitudinally
invariant structures to modes for structures with longitu-
dinal variations, such as periodic structures and Kerr-type
nonlinear waveguides where intensity-dependence induces
longitudinal variation in the presence of a propagating
wave.

= The appendix provides the essential results of elementary
applied group representation theory used for the analysis
of many physical and chemical systems involving symme-
try. Together with the symmetry tutorial included in Sec. 3.2,
this provides an alternative introduction to and/or illus-
tration of concepts which students might apply by anal-
ogy in many other fields such as quantum, solid-state, and
molecular chemistry and physics.

Richard ]. Black
Langis Gagnon
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CHAPTER 1

Introduction

I this chapter, Secs. 1.1 through 1.4 introduce the major themes of
the book. Section 1.5 provides an intuitive introduction to optical
waveguide modes and Sec. 1.6 provides a chapter-by-chapter out-
line of the remainder of the book highlighting major results.

1.1 MODES
This is a book about lightguide mode forms. In particular,

1. We emphasize the basic structure of modal field patterns
in optical fiber cross sections transverse to the direction of
propagation.

2. We consider the relative longitudinal dependencies of
modal fields in terms of their propagation constant degeneracies
or splittings. Our major objective is to provide an understand-
ing of how transverse optical waveguide geometry influ-
ences modal polarization properties with refractive index
variations ranging from macroscopic “global anisotropies”
down to scales much smaller than a wavelength where the
local refractive indices of the constituent waveguide media
can be treated as anisotropic. As in Refs. 1 and 2, we under-
take the analysis using extensions of the weak-guidance
perturbation formalism [3] together with elementary group
representation theory [4-6]; see also Refs. 7 through 10.

As well as providing the basic general electromagnetic formalism
and structural description appropriate for analysis of the lowest-order
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2 CHAPTER 1

or fundamental modes (i.e., the two polarization states of the modes
referred to as HE,; and LP, or CP)), we go beyond that mainstay
of present-day long-distance telecommunications and include a
detailed introduction and classification of diverse forms of higher-
order modes and various polarization manifestations thereof,
e.g., modes of polarization that are transverse electric (TE), trans-
verse magnetic (TM), hybrid (HE or EH), linear (LP), circular (CP),
and “triangular” (TP). We give particular attention to the second-
order modes; e.g., for circular fibers, these are the TE,, TM,;;, and HE,,
modes, each of which may be constructed in terms of two linearly
polarized (LP,,) “pseudo-modes” or alternatively in terms of circu-
larly polarized (CP,;) modes.

Apart from the applications, since the original circular fiber
modal classification scheme due to Snitzer [11], few-mode light-
guide problems have attained a particular physical interest in their
own right, e.g., Ref. 12. Indeed, our major aim is simply to provide
an understanding of the fundamental physics of mode structure. It
is our belief that a valuable basis for future novel waveguide designs
and exploitations will be provided by a thorough knowledge of
how waveguide structure—ranging from standard to exotic—can be
used to create and manipulate modes with the desired properties.

While we mostly restrict ourselves to the concept of monochromatic
independently propagating modes of idealized lightguides with longitu-
dinally invariant linear refractive indices, these ideal “linear” modes
may form the basis for adaptations to perturbed and other less ide-
alized situations including longitudinal variations and “nonlin-
ear” effects using coupled-mode, local-mode, coupled-local-mode,
and other approaches [e.g., 3, 13]. In the context of few-mode fibers,
we mention but some of the adaptations of topical interest for which
a full understanding of ideal linear guide modes as a fundamental
building block can provide useful added insight:

1. Nonlinear (Kerr-type) intensity-dependent modal interfer-
ometry [14-17]

2. Nonlinear (second harmonic) frequency conversion via
phase matchings of different-order modes [18]

3. (Permanent-) Grating induced frequency conversion and
filtering [19, 20]

In general, few-mode lightguides have received attention
ranging from visual photoreceptor studies [21] to a particular
recent interest in modal interferometry [22, 23] and applications
thereof, such as



