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Preface

A little over half a century ago, it was said that even an ingenious per-
son could not be an engineer unless he had nearly perfect skills with the
logarithmic slide rule. The advent of the computer changed this situa-
tion crucially; at present, many young engineers have never heard of the
slide rule. The computer has profoundly changed the mathematical side
of the engineering profession. Symbolic manipulation programs can cal-
culate integrals and solve ordinary differential equations better and faster
than professional mathematicians can. Computers also provide solutions
to differential equations in numerical form. The easy availability of mod-
ern graphics packages means that many engineers prefer such approximate
solutions even when exact analytical solutions are available.

Because engineering courses must provide an understanding of the fun-
damentals, they continue to focus on simple equations and formulas that
are easy to explain and understand. Moreover, it is still true that stu-
dents must develop some analytical abilities. But the practicing engineer,
armed with a powerful computer and sophisticated canned programs, em-
ploys models of processes and objects that are mathematically well beyond
the traditional engineering background. The mathematical methods used
by engineers have become quite sophisticated. With insufficient base knowl-
edge to understand these methods, engineers may come to believe that the
computer is capable of solving any problem. Worse yet, they may decide
to accept nearly any formal result provided by a computer as long as it was
generated by a program of a known trademark.

But mathematical methods are restricted. Certain problems may ap-
pear to fall within the nominal solution capabilities of a computer program
and yet lie well beyond those capabilities. Nowadays, the properties of so-
phisticated models and numerical methods are explained using terminology
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from functional analysis and the modern theory of differential equations.
Without understanding terms such as “weak solution” and “Sobolev space”,
one cannot grasp a modern convergence proof or follow a rigorous discus-
sion of the restrictions placed on a mathematical model. Unfortunately, the
mathematical portion of the engineering curriculum remains preoccupied
with 19th century topics, even omitting the calculus of variations and other
classical subjects. It is, nevertheless, increasingly more important for the
engineer to understand the theoretical underpinning of his instrumentation
than to have an ability to calculate integrals or generate series solutions of
differential equations.

The present text offers rigorous insight and will enable an engineer to
communicate effectively with the mathematicians who develop models and
methods for machine computation. It should prove useful to those who
wish to employ modern mathematical methods with some depth of under-
standing.

The book constitutes a substantial revision and extension of the earlier
book The Calculus of Variations and Functional Analysis, written by the
first two authors. A new chapter (Chapter 2) provides applications of the
calculus of variations to nonstandard problems in mechanics. Numerous
exercises (most with extensive hints) have been added throughout.

The numbering system is as follows. All definitions, theorems, corol-
laries, lemmas, remarks, conventions, and examples are numbered consecu-
tively by chapter (thus Definition 1.7 is followed by Lemma 1.8). Equations
are numbered independently, again by chapter.

We would like to thank our World Scientific editor, Mr. Yeow-Hwa Quek.

Leonid P. Lebedev
Department of Mathematics, National University of Colombia, Colombia,

Michael J. Cloud
Department of Electrical and Computer Engineering, Lawrence Technolog-
ical University, USA

Victor A. Eremeyev

Institute of Mechanics, Otto von Guericke University Magdeburg, Germany
South Scientific Center of RASci and South Federal University, Rostov on
Don, Russia
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Chapter 1

Basic Calculus of Variations

1.1 Introduction

Optimization is a universal goal. Students would like to learn more, receive
better grades, and have more free time; professors (at least some of them)
would like to give better lectures, see students learn more, receive higher
pay, and have more free time. These are the optimization problems of real
life. In mathematics, optimization makes sense only when formulated in
terms of a function f(z) or other expression. One then seeks the mini-
mum value of the expression. (It suffices to discuss minimization because
maximizing f is equivalent to minimizing —f.)

This book treats the minimization of functionals. The notion of func-
tional generalizes that of function. Although the process of generalization
does yield results of greater generality, as a rule the results are not sharper
in particular cases. So to understand what can be expected from the calcu-
lus of variations, we should review the minimization of ordinary functions.
All quantities will be assumed sufficiently differentiable for the purpose at
hand. Let us recall some terminology for the one-variable case y = f(x).

Definition 1.1. The function f(z) has a local minimum at a point z¢ if
there is a neighborhood (z¢ — d, o + d) in which f(z) > f(zo). We call zg
the global minimum of f(x) on [a,b] if f(z) > f(zo) holds for all z € [a, b].

The necessary condition for a differentiable function f(z) to have a local
minimum at xq is

f'(z0) = 0. (1.1)
A simple and convenient sufficient condition is

f"(zo) > 0. (1.2)
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Unfortunately, no available criterion for a local minimum is both sufficient
and necessary. So the approach is to solve (1.1) for possible points of local
minimum of f(z) and then test these using an available sufficient condition.
The global minimum on [a, b] can be attained at a point of local mini-
mum. But there are two points, a and b, where (1.1) may not hold (because
the corresponding neighborhoods are one-sided) but where the global min-
imum may still occur. Hence given a differentiable function f(z) on [a,b],
we first find all z; at which f’(zx) = 0. We then calculate f(a), f(b), and
f(xk) at the x, and choose the global minimum. Although this method
can be arranged as an algorithm suitable for machine computation, it still
cannot be reduced to the solution of an equation or system of equations.
These tools are extended to multivariable functions and to more com-
plex objects called functionals. A simple example of a functional is an
integral whose integrand depends on an unknown function and its deriva-
tive. Since the extension of ordinary minimization methods to functionals
is not straightforward, we continue to examine some notions from calculus.
A continuously differentiable function f(z) obeys Lagrange’s formula

fle+h)—f(@)=f(z+6h)h  (0<O<1). (1.3)
Continuity of f’ means that
f'(@+6h)— f'(x) =r1(z,6,h) >0 as h — 0,
hence
f(z+h) = f(z)+ f'()h + r1(z,0,h) h

where 71(x,0,h) — 0 as h — 0. The term r,(z, 0, h) h is Lagrange’s form
of the remainder. There is also Peano’s form

f(z+h) = f(z)+ f'(z)h + o(h), (1.4)

which means that

1o L@ R) = f(@) = f@h _

h—0 h

0.

The principal (linear in h) part of the increment of f is the first differ-
ential of f at x. Writing dx = h we have

df = Flz)dx (1.:5)

“Infinitely small” quantities are not implied by this notation; here dz is a
finite increment of z (taken sufficiently small when used for approximation).
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The first differential is invariant under the change of variable z = ¢(s):
_ 4

Lagrange’s formula extends to functions having m continuous deriva-
tives in some neighborhood of x. The extension for z + h lying in the
neighborhood is Taylor’s formula:

F@+h) = F@) + F@h+ g @R 4+ e D @

: %ﬂm)(z FORA™  (0<O<1). (1.6)

—T-2"ds, where dz = ¢'(s)ds.

Continuity of f(™) at z yields
™ (z +60h) — f™(2) = rp(2,0,h) >0 ash — 0,

hence Taylor’s formula becomes
1 1
fl@+h) = f@)+ f@h+ o f @h® + - + — fM (@)™

1

+ —'rm(x,O, h)h™
m!

with remainder in Lagrange form. The dependence of the remainder on the

parameters is suppressed in Peano’s form
flx+h)=f(x)+f (:c)h+ f"(:v)h2+ -t —= f(m)(m)hero(hm) (1.7)

The conditions of minimum (1.1)-(1.2) can be derived via Taylor’s for-
mula for a twice continuously differentiable function having

flz+h)— f(z) = f'(x)h + %f”(x)h2 + o(h?). (1.8)

Indeed f(xz+ h) — f(z) > 0 if z is a local minimum. The right side has the
form ah + bh? + o(h?). If a = f'(x) # 0, for example when a < 0, then for
h < hg with sufficiently small k¢ the sign of f(z + h) — f(z) is determined
by that of ah; hence for 0 < h < hg we have f(z + h) — f(z) < 0, which
contradicts the assertion that x minimizes f. The case a > 0 is similar,
resulting in the necessary condition (1.1). The increment formula gives

f@+ ) = (@) = 31" @ +o(h?).

The term f”(x)h? defines the value of the right side when h is sufficiently
close to 0, hence when f”(z) > 0 we see that for sufficiently small |h| # 0
flx+h) = f(z) > 0.

So (1.2) is sufficient for z to be a minimum point of f.
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A function in n variables

Consider the minimization of a function y = f(x) with x = (z1,...,z,).
More cannot be expected from this theory than from the theory of functions
in a single variable.

Definition 1.2. A function f(x) has a global minimum at the point x* if
the inequality

f(x*) < f(x* +h) (1.9)

holds for all nonzero h = (hy,...,h,) € R®. The point x* is a local
minimum if there exists p > 0 such that (1.9) holds whenever |h| =
(B2 + -+ h2)V2 < p.

Let x* be a minimum point of a continuously differentiable function
f(x). Then f(z1,z3,...,2}) is a function in one variable z; and takes its
minimum at z}. It follows that f/0x; = 0 at z; = 7. Similarly, the rest
of the partial derivatives of f are zero at x*:

of

6a:i Se=3c*

=0, i=1,...,n (1.10)

This is a necessary condition of minimum for a continuously differentiable
function in n variables at the point x*.

To get sufficient conditions we must extend Taylor’s formula. Let f(x)
possess all continuous derivatives up to order m > 2 in a ball centered at
point x, and suppose x + h lies in this ball. Fixing these, we apply (1.7) to
f(x+th) and get Taylor’s formula in the variable ¢:

_ df (x + th) 1 d®f(x + th)
flctth) = 0+ =g t+ g —

1 d™f(x + th)

—_— tm t™).

m/! dtm 0 o)

The remainder term is for the case when ¢t — 0. From this equality for
sufficiently small ¢, the general Taylor formula can be derived.

The minimization problem for f(x) is studied using only the first two
terms of this formula:

d h 1 d? h
Pt 8h) = fl)+ % ot ﬁ%ﬁ o). (111)

We calculate df (x + th)/dt as a derivative of a composite function:

df (x + th) _0f(x) 0f(x) 0f(x)
dt t=0_ 0z B Ozo hat---+ Oz, hn-

t2
t=0
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The first differential is defined as

8f (X) 6f (x) L ()

df = dry + ——dxo + - 3 dxy,. (1.12)
The next term,
d? f(x + th) 0% f(x)
— = hihj,
dt? - ijzzl ox;0x; =’
defines the second differential of f:
2
d2f = Z 0 (x) ;. (1.13)

Taylor’s formula of the second order becomes

x 2
f(x+h)= +Z‘9f( $o7 Z ‘9f )hh +o(|n)?). (1.14)

The necessary condition for a minimum, df = 0, follows from (1.11) or
(1.10). By (1.11), the condition

d? f(x + th)

72 > 0 for any sufficiently small |/hl||

t=0

suffices for x to minimize f. The corresponding quadratic form in the
variables h; is

62f(X) L Pf(x)

83:1 012, hy

1
LS n| o [
32f(x) Bzf(x) hon,

0z, Bx,zl

The n x n Hessian matriz is symmetric under our smoothness assump-
tions on f. Positive definiteness of the quadratic form can be verified via
Sylvester’s criterion.

The problem of global minimum for a function in many variables on a
closed domain 2 is more complicated than the corresponding problem for
a function in one variable. Indeed, the set of points satisfying (1.10) can
be infinite for a multivariable function. Trouble also arises concerning the
domain boundary 9€2: since it is no longer a finite set (unlike {a, b}) we must
also solve the problem of minimum on 952, and the structure of such a set
can be complicated. The algorithm for finding a point of global minimum
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of a function f(x) cannot be described in several phrases; it depends on the
structure of both the function and the domain.

Issues connected with the boundary can be avoided by considering the
problem of global minimum of a function on an open domain. We will take
this approach when treating the calculus of variations. Although analogous
problems with closed domains arise in applications, the difficulties are so
great that no general results are applicable to many problems. One must
investigate each such problem separately.

Constraints of the form

gi(x) =0, t=Ll..;,m, (1.15)

permit reduction of constrained minimization to an unconstrained problem
provided we can solve (1.15) and get

Bk = Pp{@150: 2 Tri—m); bk=n—m+1,... 0%
Substitution into f(x) would yield an ordinary unconstrained minimization
problem for a function in n — m variables

f(x17 suie o 7zn—m7 R 7wn($11 R 7xn—m))-

The resulting system of equations is nonlinear in general. This situation can
be circumvented by the use of Lagrange multipliers. The method proceeds
with formation of the Lagrangian function

m
L1y 0 e ey Bras Ny o5 M) = FE) + D Asg5(x), (1.16)

=1
by which the constraints g; are adjoined to f. Then the z; and \; are all
treated as independent, unconstrained variables. The resulting necessary
conditions form a system of n 4 m equations in the n 4+ m unknowns z;, A;:

Z,\ agﬂ =0 T

9;(x) = 0, F=, . o T (1.17)

Functionals

The kind of dependence in which a real number corresponds to another
(or to a finite set) is not enough to describe many natural processes. Ar-
eas such as physics and biology spawn formulations not amenable to such
description. Consider the deformations of an airplane in flight. At some
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point near an engine, the deformation is not merely a function of the force
produced by the engine — it also depends on the other engines, air resis-
tance, and passenger positions and movements (hence the admonition that
everyone remain seated during potentially dangerous parts of the flight).
In general, many real processes in a body are described by the dependence
of the displacement field (e.g., the field of strains, stresses, heat, voltage)
on other fields (e.g., loads, heat radiation) in the same body. Each field is
described by one or more functions, so the dependence is that of a func-
tion uniquely defined by a set of other functions acting as whole objects
(arguments). A dependence of this type, provided we specify the classes to
which all functions belong, is called an operator (or map, or sometimes just
a “function” again). Problems of finding such dependences are often formu-
lated as boundary or initial-boundary value problems for partial differential
equations. These and their analysis form the main content of any course
in a particular science. Since a full description of any process is complex,
we usually work with simplified models that retain only essential features.
However, even these can be quite challenging when we seek solutions.
Humans often try to optimize their actions through an intuitive — not
mathematical — approach to fuzzily-posed problems on minimization or
maximization. This is because our nature reflects the laws of nature in
total. In physics there are quantities, like energy and enthalpy, whose val-
ues in the state of equilibrium or real motion are minimal or maximal in
comparison with other “nearby admissible” states. Younger sciences like
mathematical biology attempt to follow suit: when possible they seek to
describe system behavior through the states of certain fields of parameters,
on which functions of energy type attain maxima or minima. The energy
of a system (e.g., body or set of interacting bodies) is characterized by a
number which depends on the fields of parameters inside the system. Thus
the dependence described by quantities of energy type is such that a numer-
ical value E is uniquely defined by the distribution of fields of parameters
characterizing the system. We call this sort of dependence a functional. Of
course, in mathematics we must also specify the classes to which the above
fields may belong. The notion of functional generalizes that of function so
that the minimization problem remains sensible. Hence we come to the
object of investigation of our main subject: the calculus of variations. In
actuality we shall consider a somewhat restricted class of functionals. (Op-
timization of general functionals belongs to mathematical programming, a
younger science that contains the calculus of variations — a subject some
300 years old — as a special case.) In the calculus of variations we min-



