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Internet Resources for This Chapter
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where you will

Web site —~ Everything for Calculus -+ Chapter 6
find links to step-by-step tutorials for the main topics in this chapter, a de-

tailed chapter summary you can print out, a true—false quiz, and a collection of sample test

questions. You

will also find downloadable Excel tutorials for each section, an on-line nu-

merical integration utility, and other resources. Complete text and interactive exercises
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e Numerical Integration



The Integral
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Introduction

6.1 The Indefinite Integral

6.2 Substitution

6.3 The Definite Integral As a Sum: A Numerical Approach

6.4 The Definite Integral As Area: A Geometric Approach

6.5 The Definite Integral: An Algebraic Approach and the Fundamental
Theorem of Calculus

Roughly speaking, calculus is divided into two parts: differential calculus (the calcu-
lus of derivatives) and integral calculus, which is the subject of this chapter and the
next. Integral calculus is concerned with problems that are in some sense the reverse
of the problems seen in differential calculus. For example, whereas differential cal-
culus shows how to compute the rate of change of a quantity, integral calculus shows
how to find the quantity if we know its rate of change. This idea is made precise in
the Fundamental Theorem of Calculus. Integral calculus and the Fundamental The-
orem of Calculus allow us to solve many problems in economics, physics, and geom-
etry, including one of the oldest problems in mathematics—computing areas of
regions with curved boundaries.

6.1 The Indefinite Integral

Having studied differentiation in the preceding chapters, we now discuss how to
reverse the process.

Question If the derivative of F(x) is 4x°, what was F(x)?
Answer After a moment’s thought, we recognize 4x* as the derivative of x*. So, we
might have F(x) = x*. However, on thinking further, we realize that, for example
F(x) = x*+ 7 works just as well. In fact, F(x) = x* + C works for any number C.
Thus, there are infinitely many possible answers to this question.

In fact, we will see shortly that the formula F(x) = x* + C covers all possible
answers to the question. Let us give a name to what we are doing.

Antiderivative

An antiderivative of a function fis a function Fsuch that F' = f

Quick Examples

1. An antiderivative of 4x3 is x*. Because the derivative of x* is 4x°

2. Another antiderivative of 4x3 is x* + 7. Because the derivative of x* + 7 is 4x°
3. An antiderivative of 2x is x? + 12. Because the derivative of x2 + 12 is 2x
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The Integral

Thus,
If the derivative of A(x) is B(x), then an antiderivative of B(x) is A(x).

We call the set of all antiderivatives of a function the indefinite integral of the
function.

Indefinite Integral
The expression

[£@) ax
is read “the indefinite integral of f(x) with respect to x” and stands for the set
of all antiderivatives of f Thus, [f(x) dx is a collection of functions; it is not a
single function nor a number. The function f that is being integrated is called
the integrand, and the variable x is called the variable of integration.
Quick Examples

1. f4x3 de=x*+C Every possible antiderivative of 4x* has the form x* + C.

2; jZX dx=x*+C Every possible antiderivative of 2x has the form x? + C.
The constant of integration, C, reminds us that we can add any constant and
get a different antiderivative.

Indefinite Integral
2
Check that |x dx = % +C

Solution

We check by taking the derivative of the right-hand side:
d (x2 ) 2x
—|=+C)l==—+0=x Vv
dx \2 2 *

Question 1If F(x) is one antiderivative of f(x), then why must all other antideriv-
atives have the form F(x) + C?

Answer Suppose F(x) and G(x) are both antiderivatives of f(x), so that F'(x) =
G'(x). Consider what this means by looking at Figure 1. If F'(x) = G'(x) for all x,
then Fand G have the same slope at each value of x. This means that their graphs
must be parallel and hence remain exactly the same vertical distance apart. But
that is the same as saying that the functions differ by a constant—that is, that
G(x) = F(x) + C for some constant C.!

"This argument can be turned into a more rigorous proof—that is, a proof that does not rely on geo-
metric concepts such as “parallel graphs.” We should also say that the result requires that F and G
have the same derivative on an interval [a, b).



The Integral

Now, we would like to make the process of finding indefinite integrals (anti-
derivatives) more mechanical. For example, it would be nice to have a power rule
for indefinite integrals similar to the one we already have for derivatives. Two

cases suggested by the examples above are
2 -4
fxdx=%+C and fx-‘dx=%+C

We can check the last equation by taking the derivative of its right-hand side.
These cases suggest the following general statement.

Power Rule for the Indefinite Integral, Part I

n+1
fx"dx= +C ifn#—1
n+1

In Words
To find the integral of x”, add 1 to the exponent and then divide by the new ex-

ponent. This rule works provided # is not —1.

Quick Examples

X
1. |x%dx=—+C
56
1 -55
2, [dx= |xPdx Exponent form
X
—54
X
= 54 +C When we add 1 to —55, we get —54, not —56.
1
= —=——+C
54x34
3. fl dc=x+C Since 1 = x° This is an important special case.

Notes
The integral fl dx is commonly written as fdx.

Similarly, the integral f% dx may be written as fd—;
e e

We can easily check the power rule formula by taking the derivative of the
right-hand side:

d ( xn+l ) (ll HE 1)".;1
— e =3 n V
dx\n+1+ C n+1 t

Question What is the reason for the restriction n # —1?
Answer Let us answer the question with a question: Does the right-hand side of
the power rule formula make sense if n = —1?

Question Well, no, so what is

fx“ dx = _P dx
X



The Integral

Answer Think before reading on: Have you ever seen a function whose deriva-
tive is 1/x? Prodding our memories a little, we recall that In x has derivative 1/x.
In fact, as we pointed out when we first discussed it, In |x | also has derivative 1/x,
but it has the advantage that its domain is the same as that of 1/x. Thus, we can fill
in the missing case as follows.

Power Rule for the Indefinite Integral, Part 11

fx" dx =1n |x| +C Equivalently, 1;11)( =Inlx| +C.

Note Consider the function

_ ln|x|+C ifx>0
F(x)_{ln|x|+C; ifx<0

where C, and C, are possibly different constants. This function also has derivative
1/x, and so we should really write

Jx_,dx={1n|x|+cl if x>0
ln|)c]+C2 ifx<0

However, most books ignore this subtle point, as we shall also, and implicitly as-
sume that C, = C,. Thus, we will continue to write

jx" dx=In|x| +C
Here are some other indefinite integrals that come from the corresponding

formulas for differentiation.

Indefinite Integrals of Some Exponential and Trig Functions

fe‘ dx=e*+C Because e (eX) = e*

dx
fcosx dx=sinx + C Becausead; (sin x) = cos x
fsin xdx=—cosx+ C Because :;( »»»»» cos x) = sin x
fseczx dx=tanx + C Because c;i; {tan x) = sec?’x

Question 'What about more complicated functions, such as 2x* + 6x° — 1?
Answer We need the following rules for integrating sums, differences, and con-
stant multiples.

Rules for the Indefinite Integral

Sum and Difference Rules
[lfe) = )] dx = [£(x) dx = [g(x) dx

In Words
The integral of a sum is the sum of the integrals, and the integral of a difference is
the difference of the integrals.



The Integral

éxample 2

Constant Multiple Rule
fkf(x) dx = kff(x) dx (k constant)

In Words
The integral of a constant times a function is the constant times the integral of
the function. (In other words, the constant “goes along for the ride.”)

Quick Examples
4
1. Sum rule: I(.vc3 +1)dx = f.v‘ dx + jl dx = % +x+C X =x%gx =1

-4
2. Constant multiple rule: ij-‘ dx = SJ’x3 dx =15 ‘I +C k=5; flx) = x°

3. Constant multiple rule: I4 dx = 4[1 dx=4x+C k=4; f{x) =1

Why are these rules true? Because the derivative of a sum is the sum of the de-
rivatives, and similarly for differences and constant multiples.

Using the Sum and Difference Rules
Find the integrals.

11
a. f(x‘3 + x3—1)dx b. f(x“ s e —) dx
1%
C. f(e‘ — sin x + cos x) dx
Solution
a. J'(x3 +x—=1)dx = fx-‘ dx + | x° dx — fl dx Sum/difference rule
xt X8
=—+4+—==x+C Power rule
4 6
gy L1 21 11 -1
b. [|x* + 5+ = dx = |(xX*'+x M +xNdx Exponent form
x o x
= f.\‘u dx + fx‘” dx + fx" dx Sum rule
xll x*(l.l
=—+—+ln|x|+C Power rule
31 =04
10 )
= ﬁ — W + In |r| +C Back to fraction form
c. f(e" —sinx +cosx)dx =e*'+cosx +sinx+ C Two steps in one

Before we go on . . . As usual, you should check each of the answers by
differentiating.

Question Why is there only a single arbitrary constant C in each of the answers?
Answer We could have written the answer to part (a) as

x4 x°
~—+D+—+E-x+F
4 6 t
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The Integral

where D, E, and F are all arbitrary constants. Now suppose that, for example, we set
D =1,E = —2,and F = 6. Then the particular antiderivative we get is x4 + x°/6 —
x + 5, which has the form x4 + x%/6 — x + C. Thus, we could have chosen the single
constant C to be 5 and obtained the same answer. In other words, the answer x%/4 +
x/6 — x + Cis just as general as the answer x¥/4 + D + x%6 + E — x + F but simpler.

In practice we do not explicitly write the integral of a sum as a sum of inte-
grals. We just “integrate term by term” [see part (c) in Example 2] much as we
learned to differentiate term by term.

Combining the Rules
Find the integrals.
2 . xM .
a. f(le“ + 2x% — 3e%) dx b. I(W + 5 3 sin x| dx

Solution
a. We need to integrate separately each of the terms 10x*, 2x%, and 3e*. To inte-
grate 10x* we use the rules for constant multiples and powers:
xS
[10x* dx = 10[x* dx = 105 +C=26+C
The other two terms are similar. We get
4 2 105 L% s 203 -
J@oxt + 20 - 3ev) dx = 105 +275 3¢+ C= 205+ 20 — 365+ C

b. We first convert to exponent form and then integrate term by term:

2 a0 . 1
J(Tl + — — 3sin x) dx = J(Zx_"" + =x%1 — 3sin x) dx Exponent form
x 2 2

xl).9 1 xl.]
= 2@ & 211 +3cosx + C Integrate term by term.
20 0.9 1.1
= ; +)2c3+3cosx+C
Different Variable Name
Find f(l + lz) du.
u u
Solution

This integral may look a little strange because we are using the letter u instead of
x, but there is really nothing special about x. We get

1 1
J’(_ 4 _2) du = f(lr1 +u?) du Exponent form
u u

u!
=In I u I + —1 +C Integrate term by term.

1
= In I u I -—+C Simplify the result.
u



The Integral

Before we go on ... When we compute an indefinite integral, we want the inde-
pendent variable in the answer to be the same as the variable of integration. Thus,
if the integral had been written in terms of x rather than u, we would have written

J(l+l2)dx=ln|xl —1+C
X X X

Application: Cost and Marginal Cost

Finding Cost from Marginal Cost
The marginal cost to produce baseball caps at a production level of x caps is 3.20 —
0.001x dollars per cap, and the cost of producing 50 caps is $200. Find the cost function.

Solution
We are asked to find the cost function C(x), given that the marginal cost function
is 3.20 — 0.001x. Recalling that the marginal cost function is the derivative of the

cost function, we have
C'(x) = 3.20 — 0.001x
and we must find C(x). Now C(x) must be an antiderivative of C'(x), so we write

C) = [(3:20 - 0.001) dx

2
X
= 3.20x — 0.001 5 + K K is the constant of integration.

= 3.20x — 0.0005x* + K

(Why did we use K and not C for the constant of integration?) Now, unless we
know a value for K, we don’t really know what the cost function is. However,
there is another piece of information we have ignored: The cost of producing 50
baseball caps is $200. In symbols,

C(50) = 200
Substituting in our formula for C(x), we have

C(50) = 3.20(50) — 0.0005(50)> + K

200 = 15875 + K
K = 4125

Now that we know what K is, we can write the cost function.

C(x) = 3.20x — 0.0005x2 + 41.25
Before wegoon...

Question What is the significance of the term 41.25?
Answer 1If we substitute x = 0, we get

C(0) = 3.20(0) — 0.0005(0)* + 41.25
or C(0) = 41.25.

Thus, $41.25 is the cost of producing zero items; in other words, it is the fixed cost.




The Integral

Application: Motion in a Straight Line

An important application of the indefinite integral is in the study of motion. The
application of calculus to problems about motion is an example of the intertwin-
ing of mathematics and physics that is an important part of both. We begin by
bringing together some facts, scattered throughout the last several chapters, that
have to do with an object moving in a straight line.

Position, Velocity, and Acceleration: Derivative Form

If s = 5(¢) is the position of an object at time ¢, then its velocity is given by the
derivative

_ds
dt
In other words, velocity is the derivative of position.
The acceleration of an object is given by the derivative
oot
dt
In other words, acceleration is the derivative of velocity. On the planet Earth, a

freely falling body experiencing no air resistance accelerates at approximately
32 feet per second per second, or 32 ft/s? (or 9.8 m/s?).

v

We may rewrite the derivative formulas above as integral formulas.

Position, Velocity, and Acceleration: Integral Form

s(t) = fv(t) dt  because v = %i:

v(r) = J’a(t) dt  because a = %‘{

Motion in a Straight Line

You toss a stone upward at a speed of 30 feet per second.

a Find the stone’s velocity as a function of time. How fast and in what direction
is it going after 5 seconds?

b. Find the position of the stone as a function of time. Where will it be after
5 seconds?

¢. When and where will the stone reach its zenith, its highest point?

Solution

a. Let us measure heights above the ground as positive, so that a rising object has
positive velocity and the acceleration downward due to gravity is negative.
Thus, the acceleration of the stone is given by

a(t) = =32 ft/s?

We wish to know the velocity, which is an antiderivative of acceleration, so we
compute

v = [(-3)dt= 32+ C
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This is the velocity as a function of time ¢. But what is the value of C? Now, we
are told that you tossed the stone upward at 30 ft/s, so when ¢ = 0, v = 30; that
is, v(0) = 30. Thus,

30=v(0) = —-32(0) + C

so C = 30 and the formula for velocity is v(f) = —32¢ + 30. In particular, after
5 seconds the velocity is

v(5) = —32(5) + 30 = —130 ft/s
Thus, after 5 seconds the stone is falling with a speed of 130 feet per second.

b. We wish to know the position, but position is an antiderivative of velocity. Thus,

" vy = 30 /s g ZEMith s(r) = fv(t) dt = f(—321 +30)dt = =162 + 30t + C
o E— N Now, to find C we need to know the initial position s(0). We are not told this,
so let us measure heights so that the initial position is zero. Then
0=s(0)=C
and s(r) = —16¢? + 30r. In particular, after 5 seconds the stone has a height of
Path of = =
o s(5) = —16(5)* + 30(5) = —250 ft
In other words, the stone is now 250 ft below where it was when you first threw
it, as shown in Figure 2.
¢. The stone reaches its zenith when its height s(¢) is at its maximum value, which
occurs when v(r) = s'(t) is zero. So we solve
- <$r= 5 ()= —-32+30=0
to get t = 3 = 2 = 0.9375 s. This is the time when the stone reaches its zenith.
v =130 It/s The height of the stone at that time is
2 5
. S(E) = —16(E) + 30(]——) = 14.0625 feet
Figure 2 16 16 16

6.1 exercises

Evaluate the integrals in Exercises 1-10 mentally. 17. f \/«\_‘ dx 18. f \‘/; dx
1L [x*d 2. |x7dx

j_‘ “ 1¥' e 19. [Bx = 2c 2+ x5 +4)dx 20 [(4 — x*+ 1) dx
3. [6dx 4. [(—5)dx
5. [xdx 6. [(—x)d 21 (1+3—l)¢1x 22 (g—l+l)dr
. Jxdx . ) (—x)dx | PR g ol | Pl Lo
7. [(x* = x) dx 8. [(x+ xY)dx N
0. [(I +x) dx 10. [(4— x)d 2. [ —xO—dlydx 24 f("z - 23)dx
Evaluate the integrals in Exercises 11-38. 5 4
1. [x%dx 12. [x7dx 25, f (ﬁ—;ﬁ) dx 26. f (%_ l) dx

X0 U Kk :

13 [(x + x 1Y) dx 14. [(x02 — x9?) dx

15. [(u? — /) du 16. [(1/v2 + 2/v) dv 27. [(2e* + 5/x + 1/4) dx 28. [(—e* + x2— 1/8) dx



29.

6.1 x5 42 x4
f(EJr?—e)dx 30. f(;;+?—2e-)dx

m 31. f(sin x + cosx)dx 32. [(cosx — sinx) dx
A RS [(2 cos x — 4.3 sinx — 9.33) dx

m 34. f(4.l sin x + cos x — 9.33/x) dx

AR j (3.4 seclx + % - 3.2e-') dx

cpr X
3 sec’x e)dx

m“. J(T+ 1.3smx—§

Applications

43.

45

47.

49.

Marginal Cost The marginal cost of producing the xth
box of lightbulbs is 5 — (x/10,000) and the fixed cost is
$20,000. Find the cost function C(x).

Marginal Cost The marginal cost of producing the xth
box of computer disks is 10 + (x*100,000) and the fixed
cost is $100,000. Find the cost function C(x).

Marginal Cost The marginal cost of producing the xth
roll of film is 5 + 2x + 1/x. The total cost to produce one
roll is $1000. Find the cost function C(x).

Marginal Cost The marginal cost of producing the xth
box of videotape is 10 + x + 1/x2. The total cost to pro-
duce 100 hoxes is $10,000. Find the cost function C(x).

Interest Rates Between 1990 and 1998 the discount in-
terest rate in Japan declined at a rate of 0.7 percentage
point per year.? Given that the discount interest rate was
6% in 1992, use an indefinite integral to find a formula
for the interest rate / as a function of time ¢ since 1990
(t = 0 represents 1990), and use your formula to calcu-

late the interest rate in 1998.
Source: Bloomberg Financial Markets/Japan External Trade Organization/
New York Times, September 20, 1998, p. WKS.

Real Estate Between 1990 and 1997 the price of a
square foot of land in Tokyo declined at an average rate
of $25 per year. Given that the price in 1990 was $375,
use an indefinite integral to find a formula for the price p
as a function of time ¢ since 1990 (t = 0 represents 1990),
and use your formula to calculate the price in 1997.
Source: See the source in Exercise 47.

Employment 1In 1988 statewide employment in Massa-
chusetts was approximately 3,100,000. The following
quadratic model approximates the rate of increase in

2This was the average rate of change over the given period.

The Integral
2
37. I‘t dx 38. f" 2 ix
X x
39. Find f(x) if f(0) = 1 and the tangent line at (x, f(x)) has
slope x.
40. Find f(x) if f(1) = 1 and the tangent line at (x, f(x)) has
slope 1/x.
41. Find f(x) if f(0) = 0 and the tangent line at (x, f(x)) has
slope e* — 1.

42. Find f(x) if f(1) = —1 and the tangent line at (x, f(x))

has slope 2e* + 1.

employment, in thousands of people per year, in Massa-
chusetts from 1988 through 1994:3

C(r) =25 — 137t + 68

where t is the number of years since 1988. Use the model
and the 1988 employment figure for Massachusetts to
obtain a model for the total number of people N(r) em-
ployed in Massachusetts as a function of ¢.

50. Hawaiian Tourism The rate of visitor spending, in bil-
lions of dollars per year, in Hawaii during the years 1985

to 1993 can be approximated by*
r(t) = —0.1647* + 1.60t + 6.71

where t = 0 represents June 30, 1985. According to the
model, how much revenue did Hawaii earn from visi-
tor spending between June 30, 1985, and June 30, 1990?
(Give your answer to the nearest billion dollars.)

51. Medicare Spending The rate of federal spending on
Medicare (in constant 1994 dollars) increased more or less
linearly from $50 billion per year in 1972 to $160 billion
per year in 1994.5 Obtain a linear model for the rate of in-
crease of federal spending as a function of the time ¢ in
years since 1972, and use your model to obtain the total
amount C(r) spent on Medicare since 1972.

Source: Health Care Financing Administration, Economic Report of the
President/New York Times, July 23,1995, p. 1.

52. Certified Financial Planners  The number of people

who passed the exam to become a certified financial plan-

3The model is a quadratic regression based on actual data from the Massachu-
setts Department of Employment, DRI/McGraw Hill/New York Times, Janu-
ary 27,1995, p. D4.

4The model is based on a best-fit quadratic for (approximate) tourism data, as
measured in constant 1993 dollars. Source for data: Hawaii Visitors Bureau/
New York Times, September 5, 1995, p. A12.

SFigures are rounded to the nearest $10 billion.
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