xEitENgEENMELEmzEs (BSEDHR)

METRICS AND MODELS IN
SOF TWARE QUALITY
ENGINEERING

SECOND EDITION

RERELED
EES5EE e

Stephen H.Kan &

AERF AR

RFIENH T B 5 F 4 HM R F OB A BO

Metrics and Models in Software
Quality Engineering

Second Edition

REREIENEES KR

(%5 2 J§D

Stephen H. Kan

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS,

Original English language title from Proprietor’s edition of the Work,

Original English language title: Metrics and Models in Software Quality Engineering, Second Edition by
Stephen H. Kan, Copyright © 2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addisorr Wesley.
This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Spe-

cial Administrative Region of Hong Kong, Macao SAR and Taiwan).

FHB N Pearson EducationUF AT HER ERAHE LR EFH B B E LR .

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macao SAR).

RFHEAREMERA(ASETEER . RISHITEEX F0H
H&EHX) HEET.

REHERBEENEFEELS BT . 01-2003-8794
KRR A BRED A 5T, ZEIMEEIE: 010-62782989 13901104297 13801310933 .

Z B HE WA Pearson Education (1% £ H B H LR) BB IRE, AREELBHE
B 7% B (CIP) 8 E

KEFRBRIBHNERSHERGE 2)= Metrics and Models in Software Quality Engineering, Second Edition/ & &
(Kan, 8. HOE. —#HAER. —JL5 EE K E N RFE,2004.7

(REFEITENHTE EIZELZEM RTD

ISBN 7-302-08839-X

[.% L. % . BFRE-HETHE-SEFEKX—HM—HX N. TP31LS5
h E R A B 548 CIP R 5 (2004) 5 056829 &
H R B R E il e B REREERKE

http://www. tup. com. cn Hp & : 100084
& #1.010-62770175 ZEFBERSE: 010-62776969

RERE: BHUE

BN Rl & HHRRFERT

£ iT & AL FEAERT

21T & FHEBELEILLEETH

F . 185230 EP%k. 35

0.4 W 2004 E 7 B LR 2004 4F 7 A% 1 KENR
£, ISBN 7-302-08839-X/TP « 6271

Ef . 1~3000

E ft: 49.00 I

BPMAFEFRE WED LKL BT BT R EED R H R R, 55 KF RA R EER
¥, BEE®EIE. (010)62770175-3103 58(010)62795704 ,

VA

HA 21 HE, HAZEMNLEF BHEURSAENNESBEMHBN. ZPHFLILERE
EMAA TS, BHAARSREMAL ERBER ST REBRE. BEHF ENE
FREBAAHFL, LRZAREENR. BNREREHFTFOHEMEHRE, BT IR
B R SRR SR, B0F R AE AR K 18 R B R SR R AM R AR S

EH R W ARAEA 1996 SEFF IR, SR E R WRARA/E, BEHR T “REHRILH
FABGEOBD "% —RFEI #EH, RABAREHRENFF. BA 21 #HE, RINTFEH
HEREHFUTFEM BRSO, ECAWEM L FE— BT REENE WEBHITE
Rt — B A X E X EEATRERBSAR R K ETENSE K ESZ R
RELZEM . ARAERETBEINHFTFENZFLZEMRFIIE R, LIREE. EOWPH
EE R EEASRFIEMOBRMBELRBRARN. EFBEANLR HERBARIE
FEMTRILE T ORFEM URIRIIRET BT H5E 28 RI BB #M
BEH . EEARBITAENEE.

HHKFE W R

% Hl R

BEERABEA SR, KRG FRRSEGASRE. ERMNRE T HREZMEERR
A B3 Fn ot BB AR, T AR KA T R EHRM BEAPN UETFHREABMEREARZ
— o b, RARE R TR HAE IR R AREFWR AR REUEMA RN
BHRARAMNFRKG ERESFEEVHR T, KEREFEERG., U, SFKGEHHMN
A4 B A R Y, DI MBS RAE, T H SRS R R K
HABELARS B THALEREBE I . MER.ZEBNBREGEEFARERAER
BARMBEHFAZR, FPERXEXBRFHEHLZ —,fEHR IBM AR FREPF R Stephen
H. Kan,

1995 4E%5 1 SRR RIS R R EXE, $ 2 MAERSE BENEM EEMT X545 ®
BMBAERENEEAEER, 4N RS BRTHER ARNRTF RPN ER, THEE
B, i B (in-process) MW B B WEAG 7 ik S R BGHE R K RBBE B Oy i, Bgtik 19 #.

EHHUT L.

B HAIBLR . FE. T8, NEKERBHERES G, M B EREAREE, R4
FESBRPHEHER AREH,. LHEANGERFR TR B LRBHEERF KRR,
BRETRIBRETTUAPEINEENEE.

2 BMFF.E-ENEREE. CANEAREREERN FRIBABERES
FAHY /MBS , 0 McCabe Halstead BB, ME A TH LM AW REEH 5 F KA, 1
ARV KR, RS T R R S, XU AL BRIR B B R G2 e B w5 50 T R
XK, RET —HFHEMNMBBE AR, XKML YRR T . Web IRF R4 R
BEERFEAMBAONLE, TEEMIFNSHE,

8=, A 4B%4 IEEE #1 ACM 2001 F &/ M4 T RAFIEKSWEBOK) 8/ . 84K
BE-ERENHEBITENRLVRBERRAFNESERENSERN, FX L . ZEREEIH
B R TRER AR A R AN EAM

ZHH
EEME MR R ER S FREE

Foreword to the Second Edition

For more than 50 years software has been a troublesome discipline. Software’s prob-
lems are numerous and include cancelations, litigation, cost overruns, schedule over-
runs, high maintenance costs, and low levels of user satisfaction. The problems with
software occur more often than not. My company’s research indicates that more than
half of large software projects will encounter some kind of delay, overrun, or failure
to perform when deployed.

But software does not have to be as troublesome as it has been. Some complex
software projects do achieve their delivery schedules and cost targets, and behave
properly when used. Throughout my career in software I've been interested in what
distinguishes successful software projects from failures and disasters.

It happens that the main factors leading to software success are easily identified
when side-by-side comparisons of similar projects are performed, where one set was
successful and the other set was troublesome. The successful software projects
achieve excellence in software quality control, and they are able to do this because of
excellence in software quality measurements.

Although it might be thought that excellent software quality control is expensive,
it turns out to yield a very positive return on investment. When canceled software
projects and disasters are studied by means of “autopsies,” they all have similar pat-
terns: Early phases of troubled projects are handled carelessly without adequate
requirements analysis or design reviews. After rushing through the early phases and
seeming to be ahead of schedule, problems begin to mount during coding and testing.
When testing begins in earnest, serious problems are detected so that schedules and
cost targets cannot be achieved. Indeed, some software projects have so many serious
problems—termed bugs or defects—that they are canceled without completion.

il

xiv Foreword to the Second Edition

By contrast, successful projects are more thorough at the start. The requirements
are carefully analyzed and the designs are formally inspected. This takes some time
and adds upfront costs, but once coding and testing begin, the value of careful qual-
ity control allows the projects to move rapidly to a successful conclusion.

Stephen Kan and I both learned the importance of software quality control and
good software quality metrics at IBM. Even though Stephen and I worked in differ-
ent IBM labs during different decades, we have some common viewpoints. We have
both been convinced by empirical evidence that without excellent software quality
control, large system development is hazardous and likely to fail. We also both know
that effective software quality control is built on a foundation of careful measure-
ments using accurate metrics.

Stephen and I both had access to IBM’s internal quality data—one of the best
and largest collections of software data in the world. But one company’s internal
information is not sufficient to be convincing unless other organizations replicate
the findings. Stephen’s excellent book goes beyond IBM; it offers valuable informa-
tion from many companies and government agencies. He cites studies by Hewlett-
Packard, Motorola, NASA, and other organizations that have solved the problems of
how to build software successfully.

I first encountered Stephen Kan’s Metrics and Models in Software Quality
Engineering book in 1995 when the first edition was published. I found that the book
contained solid research, and that it covered a broad range of topics and very clearly
showed the relationships among them.

This new edition keeps all the virtues of the earlier work and adds substantial
new information, such as a chapter on measuring quality within the object-oriented
paradigm. Stephen Kan’s new edition contains an excellent combination of solid
scholarship and breadth of coverage. This is the single best book on software quality
engineering and metrics that I've encountered.

Capers Jones

Chief Scientist Emeritus

Software Productivity Research, Inc.
(an Artemis company)

Foreword to the First Edition

Quality management and engineering have enjoyed a diversity of applications over
the past few years. For example:

O A system of teaching hospitals conservatively estimates $17.8 million saved
on an investment of $2.5 million in quality management over a five-year time
period.

O The U.S. Air Force Military Airlift Command improved capacity so much
through quality improvement problem solving during the Gulf War that they
avoided having to deploy civilian aircraft (thus avoiding the suspension of
next-day mail delivery, among other conveniences).

O The U.S. Bureau of Labor Statistics reduced the time needed to produce the
monthly Consumer Price Index (CPI), compiled by 650 people in five depart-
ments, by 33 percent with no loss in accuracy.

OO The University of Pennsylvania saved more than $60,000 a year from one pro-
ject focused on reducing mailing costs.

The examples go on and on, from industries such as telecommunications, health
care, law, hospitals, government, pharmaceuticals, railways, and schools. The variety
of terrains where the seeds of TQM successfully take hold is almost baffling.

As the rest of the world moves headlong into quality improvement at revolution-
ary rates, the software developers and engineers—consumed in debates over metrics
and process models, over methodologies and CASE tools—often lag far behind.
Some of the reasons include unique challenges in defining user requirements, the
“guru” mentality prevalent in many software organizations, and the relative immatu-
rity of the application of software engineering. Whereas the first two are fascinating

xv

xvi Foreword to the First Edition

topics in their own right, it is the third challenge at which Stephen Kan’s book is
squarely aimed.

Imagine designing an airplane using a small fraction of the aeronautical engi-
neering knowledge available. Imagine designing an automobile while ignoring
mechanical engineering. Imagine running a refinery with no knowledge of chemical
process engineering. It is not surprising that the first recommendations from consul-
tants offering credible software quality solutions would be to apply proven software
engineering methods first. Just as these methods only slowly find acceptance in soft-
ware development communities, so also have the methods of quality engineering.

One reason for this slow adoption lies with the relative lack of literature that
gives clear descriptions of the fundamentals in these fields while illustrating actual
use within leading-edge software development organizations. Stephen Kan’s book,
Metrics and Models in Software Quality Engineering, represents a laudable move to
fill this need.

Dr. Kan provides a uniquely comprehensive reference to the field of software
quality engineering. He has managed a delightful balance between the technical
details needed and practical applications of the models and techniques. This book is
peppered with industry examples, not only from Kan’s own employer, the Malcolm
Baldrige National Quality Award-winning IBM Rochester, but from NEC’s Switching
Systems Division, Hewlett-Packard, Motorola, NASA Software Engineering Lab-
oratory, and IBM Federal Systems Division. Concepts and theory are illustrated by
software industry examples, which make the reading that much richer.

Dr. Joseph Juran, one of the key founders of modern quality management and
engineering, describes “life behind the quality dikes.” As society becomes more
reliant on technology, failures of that technology have increasing adverse impacts.
Quality helps to insulate society from these dangers. This role of quality in software
development certainly rivals that of business competitiveness, and gives another
compelling reason to read, understand, and apply the ideas within this book.

Brian Thomas Eck, Ph.D.
Vice President

Juran Institute, Inc.
Wilton, Connecticut

Preface

Looking at software engineering from a historical perspective, the 1960s and earlier
could be viewed as the functional era, the 1970s the schedule era, the 1980s the cost
era, and the 1990s and beyond the quality and efficiency era. In the 1960s we learned
how to exploit information technology to meet institutional needs and began to link
software with the daily operations of institutions. In the 1970s, as the industry was
characterized by massive schedule delays and cost overruns, the focus was on plan-
ning and control of software projects. Phase-based life-cycle models were intro-
duced, and analysis, like the mythical man-month, emerged. In the 1980s hardware
costs continued to decline, and information technology permeated every facet of our
institutions and became available to individuals. As competition in the industry
became keen and low-cost applications became widely implemented, the importance
of productivity in software development increased significantly. Various software
engineering cost models were developed and used. In the late 1980s, the importance
of quality was also recognized.

The 1990s and beyond is certainly the quality era. With state-of-the-art technol-
ogy now able to provide abundant functionality, customers demand high quality.
Demand for quality is further intensified by the ever-increasing dependence of soci-
ety on software. Billing errors, large-scale disrupted telephone services, and even
missile failures during recent wars can all be traced to the issue of software quality.
In this era, quality has been brought to the center of the software development
process. From the standpoint of software vendors, quality is no longer an advantage
factor in the marketplace; it has become a necessary condition if a company is to
compete successfully.

Starting in the mid 1990s two major factors emerged that have proved to have an
unprecedented impact on not only software engineering but also on global business
environments: business reengineering for efficiency and the Internet. Software

xvii

xviii Preface

development has to be more efficient and the quality level of the delivered products
has to be high to meet requirements and to be successful. This is especially the case
for mission-critical applications. The adverse impact of poor quality is much more
significant and at a much wider scale; the quality “dikes” that software is supposed to
provide are never more important. These factors will continue to affect software
engineering for many years to come during this new millennium.

Measurement plays a critical role in effective and efficient software develop-
ment, as well as provides the scientific basis for software engineering that makes it a
true engineering discipline. This book describes the software quality engineering
metrics and models: quality planning, process improvement and quality control, in-
process quality management, product engineering (design and code complexity),
reliability estimation and projection, and analysis of customer satisfaction data.
Many measurement books take an encyclopedic approach, in which every possible
software measurement is included, but this book confines its scope to the metrics and
models of software quality. Areas such as cost estimation, productivity, staffing, and
performance measurement, for which numerous publications exist, are not covered.

In this edition, seven new chapters have been added, covering in-process metrics
for software testing, object-oriented metrics, availability metrics, in-process quality
assessment, software project assessment, process improvement dos and don’ts, and
measuring software process improvement. The chapter that described the AS/400
software quality management system has been eliminated. Updates and revisions
have been made throughout the original chapters, and new sections, figures, and
tables have been added.

Two of the new chapters are special contributions from two experts. This is a key
feature of the new edition. The chapter on the dos and don’ts of software process
improvement is contributed by Patrick O’ Toole. A highly regarded process improve-
ment expert and with over 20 years of experience, Patrick brings to this book a per-
spective on process improvement that I share as a practitioner. That perspective is
based on practical experience, is project-centric, and is aligned with the strategic
business imperative of the organization. Patrick also brings humor to this otherwise
serious subject, making the reading of the chapter so enjoyable. The chapter on mea-
suring software process improvement is a special contribution by Capers Jones. A
pioneer in software metrics, productivity research, software quality control, and soft-
ware assessments, Capers’s work is well known nationally and internationally. His
data-based and fact-based approach in software assessments and benchmarking stud-
ies is unparalleled. Based on experience and data from more than 10,000 projects, he
brings to the readers a practical approach to software process improvement and the
major quantitative findings related to software process improvement. The value of
function point metrics is demonstrated via the analyses and findings. The chapter is a
must read for software process professionals who are interested in measuring soft-
ware process improvement.

Preface Xix

Another new feature in this edition is a set of recommendations for small teams
and organizations that are starting to implement a metrics program, with minimum re-
sources. These recommendations are shown in the form of box inserts in nine of the
chapters. A number of examples in the book are based on small team projects, and
many methods and techniques are appropriate for large projects as well as small ones.
This set of recommendations is from the perspective of small organizations or teams
using a small number of metrics, with the intent to effect improvement in their soft-
ware development effort.

This book is intended for use by software quality professionals; software project
managers; software product managers; software development managers; software
engineers; software product assurance personnel; and students in software engineer-
ing, management information systems, systems engineering, and quality engineering
and management. For teachers, it is intended to provide a basis for a course at the
upper-division undergraduate or graduate level. A number of software engineering,
computer science, and quality engineering programs in the United States and over-
seas have used the first edition of this book as a text.

Themes of This Book

This book has several themes. First, balancing theory, techniques, and real-life exam-
ples, it provides practical guidelines in the practice of quality engineering in software
development. Although equations and formaulas are involved, the focus is on the
understanding and applications of the metrics and models rather than mathematical
derivations. Throughout the book, numerous real-life examples are used from the
software development laboratory at IBM Rochester, Minnesota, home of the AS/400
and the IBM eServer iSeries computer systems, and from other companies in the
software industry. IBM Rochester won the Malcolm Baldrige National Quality
Award in 1990. A number of metrics described in this book were being used at that
time, and many have been developed and refined since then. All metrics are substan-
tiated by ample implementation experience. IBM Rochester develops and delivers
numerous projects of different sizes and types every year, including very large and
complex as well as small ones; and they range from firmware, to operating systems,
to middleware, to applications.

Second, I attempt to provide a good coverage of the various types of metrics and
models in the emerging field of software quality engineering. In addition to general
discussions about metrics and techniques, this book categorizes and covers four types
of metrics and models: (1) quality management models; (2) software reliability and
projection models; (3) complexity metrics and models; and (4) customer-view met-
rics, measurements, and models. These metrics and models cover the entire software
development process from high-level design to testing and maintenance, as well as all

XX Preface

phases of reliability. Furthermore, although this book is not on total quality manage-
ment (TQM), it is a major consideration in the coverage of metrics. The philosophy of
TQM is the linking of product quality and customer satisfaction for the purpose of
achieving long-term success. TQM is the reason for including two chapters on
customer-view metrics and measurements—availability metrics and customer satis-
faction—in addition to the many chapters on product and process metrics. In other
discussions in the book, the customer’s perspective is included where appropriate.

Third, by linking metrics and models to quality improvement strategies and
improvement actions, we attempt to focus on using, not just describing, metrics.
A framework for interpreting in-process metrics and assessing in-process quality
status—the effort/outcome model—is presented. The direct link between a recom-
mended quality strategy during development and the defect-removal model is shown.
Examples of actions tied to specific metrics and analysis are given. Furthermore, to
illustrate the metrics, many figures and graphs are used. This is a reflection of the
fact that in real-life project and quality management, a clear visual presentation often
improves understanding and increases the effectiveness of the metrics.

Fourth, following up on quality and process improvement at a more general level
than specific metric discussions, the book continues with chapters that discuss the in-
process quality assessment process, a method for conducting software project assess-
ments, practical advice on process improvement dos and don’ts, and quantitative
analysis of software process improvement. The common thread underlying these
chapters, as with other chapters on metrics and models, is practical experience with
industry projects.

Organization of This Book
The following list details the focus of each chapter.

O Chapter 1, What Is Software Quality?, discusses the definition of quality and
software quality. The customer’s role in the definition is highlighted. Quality
attributes and their relationships are discussed. The second part of the chapter
covers the definition and framework of TQM and the customer’s view of qual-
ity, a key focus in this book.

O Chapter 2, Software Development Process Models, reviews various develop-
ment process models that are used in the software industry. It briefly describes
two methods of software process maturity assessment—the SEI process capa-
bility maturity model (CMM) (by the Software Engineering Institute) and the
SPR assessment method (by the Software Productivity Research, Inc.). It sum-
marizes two bodies of quality management standards—the Malcolm Baldrige
National Quality Award assessment discipline and ISO 9000.

Preface

Chapter 3, Fundamentals of Measurement Theory, examines measurement
theory fundamentals, which are very important for the practice of software
measurement. The concept of operational definition and its importance in mea-
surement are illustrated with an example. The level of measurement, some basic
measures, and the concept of six sigma are discussed. The two key criteria of
measurement quality, reliability and validity, and the related issue of measure-
ment errors are examined and their importance is articulated. This chapter also
provides a discussion on correlatton and addresses the criteria necessary to
establish causality based on observational data.

Chapter 4, Software Quality Metrics Overview, presents examples of quality
metrics for the three categories of metrics associated with the software life
cycle: end-product, in-process, and maintenance. It describes the metrics
programs of several large software companies and discusses collection of
software engineering data.

Chapter 5, Applying the Seven Basic Quality Tools in Software Development,
describes the application of the basic statistical tools for quality control, known
as Ishikawa’s seven basic tools, in software development. The potentials and
challenges of applying the control chart in software environments are dis-
cussed. In addition, a qualitative tool for brainstorming and for displaying
complex cause-and-effect relationships—the relations diagram—is discussed.

Chapter 6, Defect Removal Effectiveness, is the first of five chapters about the
models and metrics that describe the quality dynamics of software develop-
ment. Through two types of models, quality management models and software
reliability and projection models, the quality of software development can be
planned, engineered, managed, and projected. This chapter examines the central
concept of defect removal effectiveness, its measurements, and its role in qual-
ity planning.

Chapter 7, The Rayleigh Model, describes the model and its implementation as
a reliability and projection model. The Rayleigh Model’s use as a quality man-
agement model is discussed in Chapter 9.

Chapter 8, Exponential Distribution and Reliability Growth Models, discusses
the exponential distribution and the major software reliability growth models.
These models, like the Rayleigh Model, are used for quality projection before
the software is shipped to customers, just before development is complete. The
models are also used for maintenance planning, to model the failure pattern or
the defect arrival patterns in the field.

Chapter 9, Quality Management Models, describes several quality management
models that cover the entire development cycle. In-process metrics and reports
that support the models are shown and discussed. A framework for interpreting
in-process metrics and assessing in-process quality status—the effort/outcome
model—is presented.

Preface

Chapter 10, In-Process Metrics for Software Testing, is a continuation of
Chapter 9; it focuses on the metrics for software testing. The effort/outcome
model, as it applies to metrics during the testing phase, is elaborated. Candidate
metrics for acceptance testing to evaluate vendor-developed software, and the
central question of how to know your product is good enough to ship, are also
discussed.

Chapter 11, Complexity Metrics and Models, discusses the third type of metrics
and models in software engineering. While quality management models and
reliability and projection models are for project management and quality man-
agement, the objective of the complexity metrics and models is for software
engineers to be able to improve their design and implementation of software
development.

Chapter 12, Metrics and Lessons Learned for Object-Oriented Projects, covers
design and complexity metrics, productivity metrics, quality and quality man-
agement metrics for object-oriented development, and lessons learned from the
deployment and implementation of OO projects. The first section can be
viewed as a continuation of the discussion on complexity metrics and models;
the other sections fall within the framework of quality and project management.

Chapter 13, Availability Metrics, discusses system availability and outage met-
rics, and explores the relationships among availability, reliability, and the tradi-
tional defect-rate measurement. Availability metrics and customer satisfaction
measurements are the fourth type of metrics and models—customer-oriented
metrics.

Chapter 14, Measuring and Analyzing Customer Satisfaction, discusses data
collection and measurements of customer satisfaction, and techniques and mod-
els for the analysis of customer satisfaction data. From Chapter 3 to this chap-
ter, the entire spectrum of metrics and models is covered.

Chapter 15, Conducting In-Process Quality Assessments, describes in-process
quality assessments as an integrated element of good project quality manage-
ment. Quality assessments are based on both quantitative indicators, such as
those discussed in previous chapters, and qualitative information.

Chapter 16, Conducting Software Project Assessments, takes the discussion to
yet another level; this chapter proposes a software project assessment method.
The focus is at the project level and the discussion is from a practitioner’s
perspective.

Chapter 17, Dos and Don’ts of Software Process Improvement by Patrick
O’Toole, offers practical advice for software process improvement profession-
als. It provides a link to the process maturity discussions in Chapter 2.

Chapter 18, Using Function Point Metrics to Measure Software Process
Improvement by Capers Jones, discusses the six stages of software process
improvement. Based on a large body of empirical data, it examines the costs
and effects of process improvement. It shows the results of quantitative analy-

Preface xxiil

ses with regard to costs, time, schedule, productivity, and quality. It articulates
the value of Function Point metrics. It provides a link to the process maturity
discussions in Chapter 2.

O Chapter 19, Concluding Remarks, provides several observations with regard
to software measurement in general and software quality metrics and models
in particular, and it offers a perspective on the future of software engineering
measurement.

O Inthe Appendix, a real-life example of a project assessment questionnaire is

shown. Per the methods and techniques discussed in Chapter 16, readers can
customize the questionnaire for their project assessment efforts.

Suggested Ways to Read This Book

The chapters of this book are organized for reading from beginning to end. Later
chapters refer to concepts and discussions in earlier chapters. At the same time, each
chapter addresses a separate topic and chapters in some groups are more closely
coupled than others. Some readers may choose to read specific topics or decide on
different starting points. For example, those who are not interested in quality defini-
tions, process models, and measurement fundamentals discussions can start with
Chapter 4, Software Quality Metrics Overview. Those who intend to immediately get
to the central topics of defect removals, metrics and models for quality planning, and
management and projection can start with Chapter 6, Defect Removal Effectiveness.
In general, I recommend that the chapters be read in groups, as follows.

Chapters 1 through 3
Chapter 4

Chapter 5

Chapters 6 through 10
Chapters 11 and 12
Chapters 13 and 14
Chapters 15 through 18
Chapter 19

ooooooon

Acknowledgments

I would like to thank Terry Larson, Steve Braddish, and Mike Tomashek for their
support of this project. I wish to thank the entire iSeries software development team
at IBM Rochester, especially the release and project management team and the test

xxiv Preface

teams, who made the many metrics and models described in this book a state of prac-
tice instead of just a theoretical discussion. A special thanks is due Diane Manlove
and Jerry Parrish for their leadership in the implementation of many of the in-process
metrics, and Bob Gintowt for his leadership work, knowledge, and insights on sys-
tem availability and outage metrics.

Appreciation is due all of my former and present colleagues in software and sys-
tem quality at IBM Rochester, other IBM divisions, IBM Center for Software
Engineering, and IBM Corporate Quality, for the numerous discussions, debates, and
insights on the subjects of measurement, quality and process improvement. There are
too many individuals and teams to name them all. Among them are: Lionel
Craddock, John E. Peterson, Dave Lind, Dr. Sam Huang, Don Mitchell, Judy Wasser,
Marijeanne Swift, Duane Miller, Dr. Dave Jacobson, Dick Bhend, Brad Talmo,
Brock Peterson, Vern Peterson, Charlie Gilmore, Jim Vlazny, Mary Ann Donovan,
Jerry Miller, Mike Tappon, Phil Einspahr, Tami Mena, Peter Bradford, Max Maurer,
Roger McKnight, Jack Hickley, Marilyn Moncol, Darrell Moore, Dusan Gasich,
Eileen Gottschall, Carl Chamberlin, Paul Hutchings, Gary Davidson, George Stark,
Kathleen Coyle, Ram Chillarege, Peter Santhanam, Kathryn Bassin, Beng Chiu,
Wanda Sarti, Brent Hodges, Bill Woodworth, and Mike Jesrani. I am grateful to Dave
Amundson, Ben Borgen, Dick Sulack, Rod Morlock, Brian Truskowski, Jeff VerHeul,
Judy Tenney, Mike Tomashek, and Paul Loftus, from whom I learned a great deal not
only about quality and quality management, but also about prudent decision making
with regard to business objectives and quality.

A special gratitude is due Capers Jones for his review of this new edition, many
excellent suggestions, and his chapter on measuring process improvement. In my
early career at IBM I benefitted a great deal from reading Capers’ pioneer work on
programming productivity, software guality control, and software assessments. Then
in 1995, I had the chance to meet him in person in Salt Lake City, where he gave a
keynote speech on software measurements at a software technology conference.
Now many years later, I continue to learn and benefit from reading his work and from
his reviews and suggestions.

My sincere thanks are due Patrick O’Toole for his special contribution of the
chapter on the dos and don’ts of software process improvement, amid his very busy
schedule. A special thanks is due Steve Hoisington for his review and helpful sug-
gestions of the new materials, and as a former colleague, his passion in quality, his
professionalism in quality management, and his long-time influence on the customer
view of quality.

Much appreciation is due Dick Hedger, for his review of and help with both the
first and second editions, his passion for and expertise in software process.improve-
ment, and his continual support over many years. I am thankful to the reviewers for
the first edition, Dr. Brian Eck, Dr. Alan Yaung, Professor Wei-Tsek Tsai, and others.
They contributed many constructive suggestions.

