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Chapter 1

Introduction and Problem Statement

Mobile robots are fast becoming one of the most prominent applications of robotics. They have
moved from the factory floor and are now being sent on missions to other planets [35], remote areas
[87], or dangerous radioactive sites [16]. The potential applications for mobile robots do not include
only special missions. They are also being used as guides in museums [13], [81] and for
entertainment purposes [36]. In order for a mobile robot to travel from one location to another, it
has to know its position at any given time. In most cases today, this is achieved by either having a
human in the navigation loop [15] who directs the vehicle remotely or by constraining the robot to
operate in a certain area, precisely mapped [19], [81] or suitably engineered; i.e. marked with
beacons [47] or other artificial landmarks [62]'. The level of autonomy depends predominantly on
the ability of the robot to know its exact location using minimal a priori information about the
environment, represented in a simple way.

In order for a robot to navigate effectively, it must be able to quickly and accurately
determine its location. Fairly accurate position estimates can be obtained by integrating kinetic
information from the robot’s proprioceptive sensors (dead-reckoning). The error accumulation in
these estimates when traveling over long distances can lead to unacceptable performance. An
effective way of observing the surroundings when the robot is uncertain of its position estimates is
by focusing on distinguishing characteristics of the environment such as landmarks. A landmark is
defined as a feature (or a combination of features) of the environment that the robot’s exteroceptive
sensors are capable of detecting. When a landmark is sensed, the robot can estimate its own pose’
by invoking information regarding the feature’s pose’ with respect to some global frame. Two poor
assumptions usually invoked by existing localization schemes are that: (i) the world is populated
with distinct landmarks, and (ii) these can be sensed at all times. Finally, the increasing need for

robots working as teams has created the demand for algorithms supporting cooperative localization

' From now on the words landmark and feature will be used interchangeably.

? As pose we define the position and orientation of the robot. For example, in case of a robot moving on a 2-
D plane its position is determined by the pair (x, y) where x is the displacement along the x-axis and y is the
displacement along the y-axis with respect to a global frame of reference. The orientation is usually denoted
as # and it describes the cumulative rotation of the robot with respect to the global frame of reference. The
pose vector combines the position and orientation information in a single pose vector.

A known feature does not always provide information regarding all three degrees of freedom x, y, 6. For
example, stellar objects (e.g. the sun or stars), the magnetic pole of the earth, the gravitational center of the
earth, the horizon, or objects in the horizon (e.g. mountain peaks) can be used as landmarks that provide only
attitude information while the rest of the positional degrees of freedom remain undetermined.
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of groups of mobile robots. Failure to address the information inter-dependencies issue has led to
schemes with unacceptable limitations: (i) At least one member of the group has to remain
stationary at all times, and (ii) visual contact between the stationary robot and the rest of the group

has to be sustained at all times.

1.1 Assumptions Made in this Thesis

In this thesis we study the case of mobile robots that theoretically carry a variety of proprioceptive
sensors that monitor the motion of the vehicle. These sensors can be accelerometers, gyroscopes,
wheel-shaft encoders, optical flow odometric systems, Doppler radars, or a combination of the
above in an inertial navigation system (INS). These devices are commonly found as parts of dead-
reckoning systems where the position of the robot is tracked by integrating the kinetic information.
The signals from these sensors contain components of noise. In our case, the assumption made is
that the noise is Gaussian with zero-mean (white process).

We also consider a robot equipped with exteroceptive sensors that monitor the environment
for features. These sensors are usually sonars, laser scanners, cameras, sun sensors or star trackers.
There are two kinds of exteroceptive measurements that we exploit for localization purposes and
each of them provides a different level of localization information: (i) Landmarks for absolute
position estimation and (ii) for the case of groups of robots, each member of the group carries
relative exteroceptive sensors for detecting other robots of the same team and measures the relative
distance and bearing between each other. A sensor with such capability is described in Chapter 3
more analytically. These robots are also assumed to be capable of communicating with each other
when required.

One last but crucial assumption made in this thesis is that all robots” initial position and state
is known. This assumption lifts the critical burden to initialize the robots pose with respect to their
surrounding environment and gives the developed localization algorithm the capability to

demonstrate its full potential.

1.2 Problem Statement

This thesis addresses the following 3 problems:



Problem 1 — Single robot localization problem: Given a number of known and identified

landmarks in space, we need to determine the optimal, in the minimum mean-square error sense,
sensor fusion scheme that combines all the collected information, previous and current, to
accurately track the robot’s sequential poses when it is moving freely in a rectangular room with

known dimensions.

Problem 2 — Multi-robot localization problem: The optimal cooperative localization scheme,

in the minimum mean-square error sense, needs to be determined. It must combine previously
related (non-independent) position information from different robots with current relative and
absolute pose measurements and compensates for the existing data inter-dependencies without
requiring that (i) at least one of the robots is stationary at any time, (ii) all robots collect

absolute measurements at all times, and (iii) all the robots sustain visual contact with each other.

Problem 3 — Localization algorithm parallelization problem: In case of groups of mobile

robots, we need to take advantage of the local processing power provided by each of the
available robots in a team and parallelize the multi-robot localization algorithm developed for
Problem 2 by equally distributing it among the robots. Furthermore, the modularity of the
algorithm is addressed by examining the problem in which a robot loses contact (no
measurements and no communication) with the other robots from the group (“lost robor”
problem) and after a time period reinserts itself in the team by reestablishing contact with the

other robots.

This thesis presents the following approaches for solving each of the previously stated problems:

Approach to Problem 1: In the single robot localization scheme, we need to efficiently
estimate the robots’ sequential positions by fussing the proprioceptive and exteroceptive sensor
information into a single algorithm to obtain a pose estimate update at every time instant. In
order for a single robot to localize itself, it needs to keep constant track of its rotational speed
signals provided by the Inertial Navigation System (INS). We have assumed that these signals
are corrupted by white Gaussian noise, thus the resulting pose estimates degrade with time.
Every time at least one absolute measurement is collected from a known and identified
landmark point in space by exteroceptive sensors capable of extracting distance and bearing
information from the landmark. These two kinds of information are then processed and fused
into an Extended Kalman Filter (EKF) configuration, which provides the minimum mean-square

error estimates of the sequential robot poses.
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e Approach to Problem 2: This problem is addressed by performing collective localization in a

group of robots, which is viewed as one entity — “group organism” — with multiple “limbs” (the
individual robots in the group) and multiple virtual “joints™ visualized as connecting each robot
with every other member of the team. This leads us to adopt a centralized extended Kalman
filter estimator, which accommodates the dynamic states of all available robots in the group and
combines the independent robot measurements and cross-correlation interdependences into a
single centralized form. Thus, a single centralized filter is responsible for estimating the robots

poses at every filter update.

e Approach to Problem 3: When groups of two or more robots are sensing each other and

exchanging information in order to improve their localization accuracy, the information
exchanged during a previous meeting can seriously affect the validity of their estimates. It can
become unrealistically over-optimistic. The information interdependencies could be
compensated by the centralized Kalman estimator, developed for Problem 2, which would
combine all the information collected by all the robots at all times. Since such an estimator has
very large communication and computational requirements, it is desired to formulate this
centralized estimator so that it can be distributed amongst the robots. The resulting scheme
requires communication only when the robots require updating their previous pose estimates.
Furthermore, this distributed scheme is an ideal solution for the “/ost robot” problem since each

of the robots handles the Kalman equations associated only with it at all time.

1.3 Research Contribution

The proposed research describes a new approach to multi-robot localization using Kalman
filtering techniques. This work has scientific contributions to both extended Kalman filtering
algorithms and multi-robot localization areas. In the field of extended Kalman filtering, the authors
provide a new approach to filter parallelism by introducing a method to distribute a centralized
system, among different agents described by different groups of states. A main assumption in this
thesis is that the agents can communicate with each other in order to exchange vital information that
relates their dynamic states. The proposed fully decoupled algorithm allows the semi-asynchronous
operation of each agent, which requires synchronization only when a full system update occurs.
This method overcomes problems of previous decentralization approaches where a remote

centralized master filter is needed to optimally combine the state vector estimations of every

12



individual agent [34], [59], or where the centralized full state vector is required to be maintained by
all agents [69], [12]. The theoretical implementation of this method in a localization scenario for a
group of three mobile robots is analytically explained in Chapter 6.

In the area of mobile robot-group localization, it provides important contributions to both
hardware and software. Chapter 3 describes a novel ultrasound sensor arrangement, which can
provide a team of robots with 2D relative observation capabilities. This arrangement uses reflective
metallic cones to disperse and receive ultrasound pulses in 360°. Such an inexpensive sensor can
outperform previous methods that are capable of collecting only 1D relative measurements [63], or
exhibit non-linear characteristics in short and long distances [45]. Furthermore, an inexpensive and
simple sensor, similar to the proposed ultrasound arraignment, can successfully replace their much
more complex and expensive camera counterparts [78], with only reduced loss in measurement
accuracy.

Finally, Chapter 5 validates a collective multi-robot localization scenario where a centralized
extended Kalman filter is implemented in a group of three mobile robots to simultaneously estimate
their position and orientation in a global frame of reference. These estimations are updated using
relative and absolute 2D measurements collected form moving robots in the group and stationary
landmarks in space. Moreover, it presents an observability case study as well as simulation results
on the reduction of the estimation error when more robots are added in the centralized localization
algorithm. The work of this chapter has been published in [48], which supports the novelty and

significance of the obtained results.

1.4 Thesis Outline

This thesis is composed of seven chapters. Chapter 2 presents a literature review of the
current state-of-the-art in single and multi-robot localization research. Chapter 3 examines a range
of hardware sensors that can be used to equip a real-robot implementation of the proposed
localization architecture. In addition, we present a solution utilizing an ultrasound sensor for the
purposes of measuring relative distance and bearing between robots. The sensor is described
sufficiently with a mathematical noise model. Chapter 4 presents the linear and non-linear Kalman
filter algorithms and examines the implementation of an Extended Kalman Filter (EKF) algorithm
in a single robot scenario using stationary landmark measurements to update the robot’s position
and orientation estimate. In Chapter 5 we extend the single robot localization problem to a multi-
robot scenario using a centralized Extended Kalman Filter (c-EKF) algorithm. The robots can only

rely on relative distance and bearing measurements collected between them to estimate their
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position and orientation states. The effects of external stationary landmarks in the c-EKF are
explored, as well as the reduction of the estimated error as the number of robots in the group
increases linearly. Chapter 6 examines the distribution of the c-EKF algorithm amongst the robots
in the team in order for the system to exhibit parallelism. We also investigate how a robot can be
isolated from the rest of the team and after a period of time to reinsert itself into the group without
causing any system degradation. Finally, Chapter 7 presents a conclusion to this thesis as well as a

discussion, which sets the ground for future work possibilities.



