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Preface

This is not a book about object-oriented programming.

You may think that’s odd. You probably found this book in the C++ section of the
bookstore, after all, and you've probably heard people use object oriented and C++
synonymously, but that isn’t the only way to use the C++ language. C++ supports
several fundamentally different paradigms, the newest and least familiar of which is
generic programming.

Like most new ideas, generic programming actually has a long history. Some of
the early research papers on generic programming are nearly 25 years-old, and the
first experimental generic libraries were written not in C++ but in Ada [MS89a, MS89b]
and Scheme [KMS88]. Yet generic programming is new enough that no textbooks on
the subject exist.

The first example of generic programming to become important outside of re-
search groups was the STL, the C++ Standard Template Library. The Standard Tem-
plate Library, designed by Alexander Stepanov (then of Hewlett-Packard Laboratories)
and Meng Lee, was accepted in 1994 as part of the C++ standard library. The freely
available “HP implementation” [SL95], which served as a demonstration of the STL's
capabilities, was released the same year. '

When the Standard Template Library first became part of the C++ standard, the
C++ community immediately recognized it as a library of high-quality and efficient
container classes. It is always easiest to see what is familiar, and every C++ program-
mer is familiar with container classes. Every nontrivial program requires some way
of managing a collection of objects, and every C++ programmer has written a class
that implements strings or vectors or lists.

Container class libraries have been available since the earliest days of C++, and
when “template” classes (parameterized types) were added to the language, one of
their first uses—indeed, one of the main reasons that templates were introduced—
was parameterized container classes. Many different vendors, including Borland, Mi-
crosoft, Rogue Wave, and IBM, wrote their own libraries that included Array<T> or
its equivalent.

The fact that container classes are so familiar made the STL seem at first to be
nothing more than yet another container class library. This familiarity diverted at-
tention from the ways in which the STL was unique.

The STL is a large and extensible body of efficient, generic, and interoperable
software components. It includes many of the basic algorithms and data structures
of computer science, and it is written so that algorithms and data structures are
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xvi Preface

decoupled from each other. Rather than a container class library, it is more accurate
to think of the STL as a library of generic algorithms; containers exist so that the
algorithms have something to operate on.

You can use the existing STL algorithms in your programs, just as you can use the
existing STL containers. For example, you can use the generic STL sort as you would
use the function gsort from the standard C library (although sort is simpler, more
flexible, safer, and more efficient). Several books, including David Musser and Atul
Saini’s STL Tutorial and Reference Guide [MS96] and Mark Nelson’s C++ Programmer’s
Guide to the Standard Template Library [Nel95], explain how to use the STL in such
a way.

Even this much is useful. It is always better to reuse code than to rewrite it,
and you can reuse the existing STL algorithms in your own programs. This is still,
however, only one aspect of the STL. The STL was designed to be extensible; that is,
it was designed so that, just as the different STL components are interoperable with
each other, they are also interoperable with components you write yourself. Using
the STL effectively means extending it.

Generic Programming

The STL is not just a collection of useful components. Its other aspect, which is less
widely recognized and understood, is that it is a formal hierarchy of abstract require-
ments that describe software components. The reason that the STL’s components are
interoperable and extensible, and the reason that you can add new algorithms and
new containers and can be confident that the new pieces and the old can be used
together, is that all STL components are written to conform to precisely specified
requirements.

Most of the important advances in computer science have been the discoveries
of new kinds of abstractions. One crucial abstraction supported by all contemporary
computer languages is the subroutine (a.k.a. the procedure or function—different
languages use different terminology). Another abstraction supported by C++ is that
of abstract data typing. In C++, it is possible to define a new data type together with
that type’s basic operations.

The combination of code and data forms an abstract data type, one that is al-
ways manipulated through a well-defined interface. Subroutines are an important
abstraction because using a subroutine doesn’t require that you depend on (or even
necessarily know) its exact implementation; similarly, you can use an abstract data
type—you can manipulate and even create values—without depending on the actual
representation of the data. Only the interface is important.

C++ also supports object-oriented programming [Boo94, Mey97], which involves
hierarchies of polymorphic data types related by inheritance. Object-oriented pro-
gramming has one more layer of indirection than abstract data typing, thus it achieves
one more step in abstraction. In some circumstances you can refer to a value and ma-
nipulate it without needing to specify its exact type. You can write a single function
that will operate on a number of types within an inheritance hierarchy.

Generic programming, too, means identifying a new kind of abstraction. The cen-
tral abstraction of generic programming is less tangible than earlier abstractions like
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the subroutine or the class or the module. It is a set of requirements on data types.
This is a difficult abstraction to grasp because it isn’t tied to a specific C++ language
feature. There is no keyword in C++ (or, for that matter, in any contemporary com-
puter language) for declaring a set of abstract requirements.

What generic programming provides in return for understanding an abstraction
that at first seems frustratingly nebulous is an unprecedented level of flexibility. Just
as important, it achieves abstraction without loss of efficiency. Generic programming,
unlike object-oriented programming, does not require you to call functions through
extra levels of indirection; it allows you to write a fully general and reusable algorithm
that is just as efficient as an algorithm handcrafted for a specific data type.

A generic algorithm is written by abstracting algorithms on specific types and
specific data structures so that they apply to arguments whose types are as general
as possible. This means that a generic algorithm actually has two parts: the actual
instructions that describe the steps of the algorithm and the set of requirements that
specify precisely which properties its argument types must satisfy.

The central innovation of the STL is the recognition that these type requirements
can be specified and systematized. That is, it is possible to define a set of abstract
concepts and to say that a type conforms to one of those concepts if it satisfies a
certain set of requirements. These concepts are important because most of the as-
sumptions that algorithms make about their types can be expressed both in terms
of conformance to concepts and in terms of the relationships between different con-
cepts. Additionally, these concepts form a well-defined hierarchy, one reminiscent
of inheritance in traditional object-oriented programming but purely abstract.

This hierarchy of concepts is the conceptual structure of the STL. It is the most im-
portant part of the STL, and it is what makes reuse and interoperability possible. The
conceptual structure would be important purely as a formal taxonomy of software
components, even without its embodiment in code. The STL does include concrete
data structures, such as pair and list, but to use those data structure effectively
you must understand the conceptual structure they are built upon.

Defining abstract concepts and writing algorithms and data structures in terms
of abstract concepts is the essence of generic programming.

How to Read This Book

This book describes the Standard Template Library as a library of abstract concepts.
It defines the fundamental concepts and abstractions of the STL and shows what it
means for a type to model one of those concepts or for an algorithm to be written in
terms of a concept’s interface. It discusses the classes and algorithms that are part
of the basic STL, and it explains how you can write your own STL-compliant classes
and algorithms and when you might want to do so. Finally, it includes a complete
reference manual of all of the STL's concepts, classes, and algorithms.

Everyone should read Part I, which introduces the main ideas of the STL and
of generic programming. It shows how to use and write a generic algorithm, and it
explains what it means for an algorithm to be generic. Genericity has implications
that go far beyond the ability to operate on multiple data types.
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Exploring the idea of a generic algorithm leads naturally to the central ideas of
concepts, modeling, and refinement, ideas that are as basic to generic programming
as polymorphism and inheritance are to object-oriented programming. Generic algo-
rithms on one-dimensional ranges, meanwhile, lead to the fundamental concepts of
the STL: iterators, containers, and function objects.

Part I introduces the notation and the typographical conventions that are used
throughout the remainder of the book: the terminology of modeling and refinement,
the asymmetrical notation for ranges, and the special typeface for concept names.

The STL defines many concepts, some of which differ from each other only in
technical details. Part I is an overview, and it discusses the broad outlines of STL
concepts. Part II is a detailed reference manual that contains a precise definition of
each STL concept. You may not wish to read Part II all the way through and, instead,
may find it more useful to look up a particular concept only when you need to refer
to its definition. (You should refer to Part II whenever you write a new type that
conforms to an STL concept.)

Part III is also a reference manual. It documents the STL’s predefined algorithms
and classes. It relies heavily on the concept definitions of Part II. All STL algorithms
and almost all concrete types are templates, and every template parameter can be
characterized as the model of some concept. The definitions in Part IIl are cross-
referenced to the appropriate sections of Part II.

In an ideal world, the book would end with Part III. Unfortunately, reality demands
one more section, an appendix that discusses portability concerns. When the STL was
first released, portability was not an issue because only one implementation existed.
That is no longer the case, and whenever more than one implementation of any
language or library exists, anyone who cares about portability must be aware of the
differences between them.

The old HP implementation is still available by anonymous FTP from butler.
hpl.hp.com, but it is no longer being maintained. A newer free implementation,
from Silicon Graphics Computer Systems (SGI) is available at http://www.sgi.com/
Technology/STL, and a port of the SGI STL to a variety of compilers, maintained by
Boris Fomitchev, is available at http://www.metabyte.com/~fbp/stl. Finally, there are
several different commercial STL implementations.

If you are writing real programes, it isn’t enough to understand the theoretical
design of the library; you also have to understand how the various STL implementa-
tions and the various C++ compilers differ. These unglamorous but necessary details
are the subject of Appendix A.

Who Should Read This Book

While this book is largely about algorithms written in C++, it is neither an introductory
textbook on algorithms nor a C++ tutorial. It does explain some of the unfamiliar
aspects of both subjects. In particular, since the STL uses templates in ways that are
uncommon in other sorts of C++ programs, it discusses some advanced techniques
of programming with templates. This should not be your first C++ book, nor should
it be your first exposure to an analysis of algorithms. You should know how to write
basic C++ programs, and you should know the meaning of notation like @(N).
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‘Two of the standard references on algorithms and data structures are Donald
Knuth's The Art of Computer Programming [Knu97, Knu98a, Knu98b], and Introduc-
tion to Algorithms, by Cormen, Leiserson, and Rivest [CLR90]. Two of the best intro-
ductory C++ books are The C++ Programming Language, by Bjarne Stroustrup [Str97],
and A C++ Primer, by Stanley Lippman and Josée Lajoie [LL98].

How This Book Came About

I joined the compiler group at Silicon Graphics Computer Systems (SGI) in 1996.
Alex Stepanov had left HP to join SGI several months before. At the time, SGI's C++
compiler did not include an implementation of the Standard Template Library. Using
the original HP implementation as our source base, Alex, Hans Boehm, and I wrote
the version of the STL that was shipped with release 7.1 (and subsequent releases)
of SGI's MIPSpro compiler.

The SGI Standard Template Library [Aus97] included many new and extended
features, such as efficient and thread-safe memory allocation, hash tables, and algo-
rithmic improvements. If these enhancements had remained proprietary, they would
have been of no value to SGI's customers, so the SGI STL was made freely available
to the public. It is distributed on the World Wide Web, along with its documentation,
at http://www.sgi.com/Technology/STL.

The documentation, a set of Web pages, treats the STL’s conceptual structure as
central. It describes the abstract concepts that comprise the structure, and it docu-
ments the STL’s algorithms and data structures in terms of the abstract concepts. We
received many requests for an expanded form of the documentation, and this book
is a response to those requests. The reference sections of this book, Parts II and III,
are an outgrowth of the SGI STL Web pages.

The Web pages were written for and are copyrighted by SGI. I am using them with
the kind permission of my management.
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