E K M & % 5

PEARSON
m—

Addison
Wesley

Generic Programming and the STL
. Using and Extending the C++ Standard Template Library

2GR STL

(R EAR)

[%] Matthew H. Austern

Generic |
Rrogramming B

)

TR A D Hh L

www.infopower.com.cn

E B R & #% 35

Generic Programming and the STL
Using and Extending the C++ Standard Template Library

R 4aFE S5 STL

(B EIh)

[2] Matthew H. Austern %

TRDRA DL 4 14

Generic Programming and the STL: Using and Extending the C++ Standard
Template Library (ISBN 0-201-30956-4)

Matthew H. Austern

Copyright © 1999 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley Longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

ZF?J%EHW Hi Pearson Education 34X+ [E . 7 HHARALZEF BB GBS, I TR ATBIX &8
X RSN HMEHRR. KT
REHRE PBEEFR, NEUEAHRE B SRIPE A BT

AA3 T IEH Pearson Education (GFAEHE HARER) BOLBIthrE, iIrEENEHE.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong
SAR and Macao SAR).

R TFHEANRIEMEZEA (AEEFEFE., WITRENTBXAPEESSMX) #%E1T.
EETHENEEESRZEIES: BF: 01-2003-1010

EBERGmE (CIP) #iE

BRRELE STL/ (%) RikE. —RHA. —Ikx: FEBEHHERME, 2003
R RBE R

ISBN 7-5083-1805-6

[z. IE. NCES-—EFRIr—%X V.TP312

 E A B 518 CIP i (2003) % 086084 5

M B & RRRZERY
B & ZREESSTL (B
%% #F: (38) MatthewH: Austern
TEFE: P
HARRAT: o E R 7 A
bk JbHH=REAEKES ERBIRES: 100044

Hig: (010) 88515918 & E: (010) 88518169
BV Rl dbREIREIRI
F A 787X1092 1/16 Bl 5k: 355
+H S ISBN 7-5083-1805-6
AR ¥K: 2003 4 11 HIERE AR 2003 4 11 A& —IKENRI

SE r: 58.00 7T
WEAERE EE2 R

Preface

This is not a book about object-oriented programming.

You may think that’s odd. You probably found this book in the C++ section of the
bookstore, after all, and you've probably heard people use object oriented and C++
synonymously, but that isn’t the only way to use the C++ language. C++ supports
several fundamentally different paradigms, the newest and least familiar of which is
generic programming.

Like most new ideas, generic programming actually has a long history. Some of
the early research papers on generic programming are nearly 25 years-old, and the
first experimental generic libraries were written not in C++ but in Ada [MS89a, MS89b]
and Scheme [KMS88]. Yet generic programming is new enough that no textbooks on
the subject exist.

The first example of generic programming to become important outside of re-
search groups was the STL, the C++ Standard Template Library. The Standard Tem-
plate Library, designed by Alexander Stepanov (then of Hewlett-Packard Laboratories)
and Meng Lee, was accepted in 1994 as part of the C++ standard library. The freely
available “HP implementation” [SL95], which served as a demonstration of the STL's
capabilities, was released the same year. '

When the Standard Template Library first became part of the C++ standard, the
C++ community immediately recognized it as a library of high-quality and efficient
container classes. It is always easiest to see what is familiar, and every C++ program-
mer is familiar with container classes. Every nontrivial program requires some way
of managing a collection of objects, and every C++ programmer has written a class
that implements strings or vectors or lists.

Container class libraries have been available since the earliest days of C++, and
when “template” classes (parameterized types) were added to the language, one of
their first uses—indeed, one of the main reasons that templates were introduced—
was parameterized container classes. Many different vendors, including Borland, Mi-
crosoft, Rogue Wave, and IBM, wrote their own libraries that included Array<T> or
its equivalent.

The fact that container classes are so familiar made the STL seem at first to be
nothing more than yet another container class library. This familiarity diverted at-
tention from the ways in which the STL was unique.

The STL is a large and extensible body of efficient, generic, and interoperable
software components. It includes many of the basic algorithms and data structures
of computer science, and it is written so that algorithms and data structures are

XV

xvi Preface

decoupled from each other. Rather than a container class library, it is more accurate
to think of the STL as a library of generic algorithms; containers exist so that the
algorithms have something to operate on.

You can use the existing STL algorithms in your programs, just as you can use the
existing STL containers. For example, you can use the generic STL sort as you would
use the function gsort from the standard C library (although sort is simpler, more
flexible, safer, and more efficient). Several books, including David Musser and Atul
Saini’s STL Tutorial and Reference Guide [MS96] and Mark Nelson’s C++ Programmer’s
Guide to the Standard Template Library [Nel95], explain how to use the STL in such
a way.

Even this much is useful. It is always better to reuse code than to rewrite it,
and you can reuse the existing STL algorithms in your own programs. This is still,
however, only one aspect of the STL. The STL was designed to be extensible; that is,
it was designed so that, just as the different STL components are interoperable with
each other, they are also interoperable with components you write yourself. Using
the STL effectively means extending it.

Generic Programming

The STL is not just a collection of useful components. Its other aspect, which is less
widely recognized and understood, is that it is a formal hierarchy of abstract require-
ments that describe software components. The reason that the STL’s components are
interoperable and extensible, and the reason that you can add new algorithms and
new containers and can be confident that the new pieces and the old can be used
together, is that all STL components are written to conform to precisely specified
requirements.

Most of the important advances in computer science have been the discoveries
of new kinds of abstractions. One crucial abstraction supported by all contemporary
computer languages is the subroutine (a.k.a. the procedure or function—different
languages use different terminology). Another abstraction supported by C++ is that
of abstract data typing. In C++, it is possible to define a new data type together with
that type’s basic operations.

The combination of code and data forms an abstract data type, one that is al-
ways manipulated through a well-defined interface. Subroutines are an important
abstraction because using a subroutine doesn’t require that you depend on (or even
necessarily know) its exact implementation; similarly, you can use an abstract data
type—you can manipulate and even create values—without depending on the actual
representation of the data. Only the interface is important.

C++ also supports object-oriented programming [Boo94, Mey97], which involves
hierarchies of polymorphic data types related by inheritance. Object-oriented pro-
gramming has one more layer of indirection than abstract data typing, thus it achieves
one more step in abstraction. In some circumstances you can refer to a value and ma-
nipulate it without needing to specify its exact type. You can write a single function
that will operate on a number of types within an inheritance hierarchy.

Generic programming, too, means identifying a new kind of abstraction. The cen-
tral abstraction of generic programming is less tangible than earlier abstractions like

Preface xvii

the subroutine or the class or the module. It is a set of requirements on data types.
This is a difficult abstraction to grasp because it isn’t tied to a specific C++ language
feature. There is no keyword in C++ (or, for that matter, in any contemporary com-
puter language) for declaring a set of abstract requirements.

What generic programming provides in return for understanding an abstraction
that at first seems frustratingly nebulous is an unprecedented level of flexibility. Just
as important, it achieves abstraction without loss of efficiency. Generic programming,
unlike object-oriented programming, does not require you to call functions through
extra levels of indirection; it allows you to write a fully general and reusable algorithm
that is just as efficient as an algorithm handcrafted for a specific data type.

A generic algorithm is written by abstracting algorithms on specific types and
specific data structures so that they apply to arguments whose types are as general
as possible. This means that a generic algorithm actually has two parts: the actual
instructions that describe the steps of the algorithm and the set of requirements that
specify precisely which properties its argument types must satisfy.

The central innovation of the STL is the recognition that these type requirements
can be specified and systematized. That is, it is possible to define a set of abstract
concepts and to say that a type conforms to one of those concepts if it satisfies a
certain set of requirements. These concepts are important because most of the as-
sumptions that algorithms make about their types can be expressed both in terms
of conformance to concepts and in terms of the relationships between different con-
cepts. Additionally, these concepts form a well-defined hierarchy, one reminiscent
of inheritance in traditional object-oriented programming but purely abstract.

This hierarchy of concepts is the conceptual structure of the STL. It is the most im-
portant part of the STL, and it is what makes reuse and interoperability possible. The
conceptual structure would be important purely as a formal taxonomy of software
components, even without its embodiment in code. The STL does include concrete
data structures, such as pair and list, but to use those data structure effectively
you must understand the conceptual structure they are built upon.

Defining abstract concepts and writing algorithms and data structures in terms
of abstract concepts is the essence of generic programming.

How to Read This Book

This book describes the Standard Template Library as a library of abstract concepts.
It defines the fundamental concepts and abstractions of the STL and shows what it
means for a type to model one of those concepts or for an algorithm to be written in
terms of a concept’s interface. It discusses the classes and algorithms that are part
of the basic STL, and it explains how you can write your own STL-compliant classes
and algorithms and when you might want to do so. Finally, it includes a complete
reference manual of all of the STL's concepts, classes, and algorithms.

Everyone should read Part I, which introduces the main ideas of the STL and
of generic programming. It shows how to use and write a generic algorithm, and it
explains what it means for an algorithm to be generic. Genericity has implications
that go far beyond the ability to operate on multiple data types.

Preface

Exploring the idea of a generic algorithm leads naturally to the central ideas of
concepts, modeling, and refinement, ideas that are as basic to generic programming
as polymorphism and inheritance are to object-oriented programming. Generic algo-
rithms on one-dimensional ranges, meanwhile, lead to the fundamental concepts of
the STL: iterators, containers, and function objects.

Part I introduces the notation and the typographical conventions that are used
throughout the remainder of the book: the terminology of modeling and refinement,
the asymmetrical notation for ranges, and the special typeface for concept names.

The STL defines many concepts, some of which differ from each other only in
technical details. Part I is an overview, and it discusses the broad outlines of STL
concepts. Part II is a detailed reference manual that contains a precise definition of
each STL concept. You may not wish to read Part II all the way through and, instead,
may find it more useful to look up a particular concept only when you need to refer
to its definition. (You should refer to Part II whenever you write a new type that
conforms to an STL concept.)

Part III is also a reference manual. It documents the STL’s predefined algorithms
and classes. It relies heavily on the concept definitions of Part II. All STL algorithms
and almost all concrete types are templates, and every template parameter can be
characterized as the model of some concept. The definitions in Part IIl are cross-
referenced to the appropriate sections of Part II.

In an ideal world, the book would end with Part III. Unfortunately, reality demands
one more section, an appendix that discusses portability concerns. When the STL was
first released, portability was not an issue because only one implementation existed.
That is no longer the case, and whenever more than one implementation of any
language or library exists, anyone who cares about portability must be aware of the
differences between them.

The old HP implementation is still available by anonymous FTP from butler.
hpl.hp.com, but it is no longer being maintained. A newer free implementation,
from Silicon Graphics Computer Systems (SGI) is available at http://www.sgi.com/
Technology/STL, and a port of the SGI STL to a variety of compilers, maintained by
Boris Fomitchev, is available at http://www.metabyte.com/~fbp/stl. Finally, there are
several different commercial STL implementations.

If you are writing real programes, it isn’t enough to understand the theoretical
design of the library; you also have to understand how the various STL implementa-
tions and the various C++ compilers differ. These unglamorous but necessary details
are the subject of Appendix A.

Who Should Read This Book

While this book is largely about algorithms written in C++, it is neither an introductory
textbook on algorithms nor a C++ tutorial. It does explain some of the unfamiliar
aspects of both subjects. In particular, since the STL uses templates in ways that are
uncommon in other sorts of C++ programs, it discusses some advanced techniques
of programming with templates. This should not be your first C++ book, nor should
it be your first exposure to an analysis of algorithms. You should know how to write
basic C++ programs, and you should know the meaning of notation like @(N).

Preface Xix

‘Two of the standard references on algorithms and data structures are Donald
Knuth's The Art of Computer Programming [Knu97, Knu98a, Knu98b], and Introduc-
tion to Algorithms, by Cormen, Leiserson, and Rivest [CLR90]. Two of the best intro-
ductory C++ books are The C++ Programming Language, by Bjarne Stroustrup [Str97],
and A C++ Primer, by Stanley Lippman and Josée Lajoie [LL98].

How This Book Came About

I joined the compiler group at Silicon Graphics Computer Systems (SGI) in 1996.
Alex Stepanov had left HP to join SGI several months before. At the time, SGI's C++
compiler did not include an implementation of the Standard Template Library. Using
the original HP implementation as our source base, Alex, Hans Boehm, and I wrote
the version of the STL that was shipped with release 7.1 (and subsequent releases)
of SGI's MIPSpro compiler.

The SGI Standard Template Library [Aus97] included many new and extended
features, such as efficient and thread-safe memory allocation, hash tables, and algo-
rithmic improvements. If these enhancements had remained proprietary, they would
have been of no value to SGI's customers, so the SGI STL was made freely available
to the public. It is distributed on the World Wide Web, along with its documentation,
at http://www.sgi.com/Technology/STL.

The documentation, a set of Web pages, treats the STL’s conceptual structure as
central. It describes the abstract concepts that comprise the structure, and it docu-
ments the STL’s algorithms and data structures in terms of the abstract concepts. We
received many requests for an expanded form of the documentation, and this book
is a response to those requests. The reference sections of this book, Parts II and III,
are an outgrowth of the SGI STL Web pages.

The Web pages were written for and are copyrighted by SGI. I am using them with
the kind permission of my management.

Acknowledgments

First and foremost, this book could not possibly have existed without the work of
Alex Stepanov. Alex was involved with this book at every stage: he brought me to SGI,
he taught me almost everything I know about generic programming, he participated
in the development of the SGI STL and the SGI STL Web pages, and he encouraged
me to turn the Web pages into a book. I am grateful to Alex for all of his help and
encouragement.

I also wish to thank Bjarne Stroustrup and Andy Koenig for helping me to un-
derstand C++ and Dave Musser for his numerous contributions (some of which can
be found in the bibliography) to generic programming, to the STL, and to this book.
Dave used an early version of the SGI STL Web pages as part of his course material,
and the Web pages were greatly improved through his and his students’ comments.

Similarly, this book was greatly improved through the comments of reviewers,
including Tom Becker, Steve Clamage, Jay Gischer, Brian Kernighan, Jak Kirman, Andy
Koenig, Angelika Langer, Dave Musser, Sibylle Schupp, and Alex Stepanov, who read

XX Preface

early versions. This book is more focused than it would have been without them, and
it contains far fewer errors. Any mistakes that remain are my own.

Several mistakes in the first, second, and third printings of this book have now
been corrected, and I wish to thank Sam Bradsher, Bruce Eckel, Guy Gascoigne, Ed
James-Beckham, Jon Jagger, Nate Lewis, CH Lin, Shawn D. Pautz, John Potter, George
Reilly, Manos Renieris, Peter Roth, Dieter Rothmeier, Andreas Scherer, and Jirgen
Zeller, for bringing these errors to my attention.

Iam also indebted to the staff at Addison-Wesley, including John Fuller, Mike Hen-
drickson, Marina Lang, and Genevieve Rajewski, for guiding me through the writing
process, and to Karen Tongish for her careful copyediting.

Finally, I am grateful to my fiancée, Janet Lafler, for her love and support and for
her patience during the many evenings and weekends that I spent writing.

Our cats, Randy and Oliver, tried to help by walking over my keyboard, but in the
end I deleted most of their contributions.

Contents

Preface

Part I Introduction to Generic Programming

Chapter 1 A Tour of the STL
1.1 ASIDPIEeEXAMPIE . : ¢ civivs s smms o 5 wmms s mmms s sis@s s gume s s s
1.2 SUMINATY o : s sws s 5 @@ s s 6wEE 85 566 55 Omids s Smwii@amesss

Chapter 2 Algorithms and Ranges

21 LinearSEarch. « csw s s apme s wmus s mom s s mse b8 wEmm e s wEis s 8 we
21.1 LinearSearchinCttt eennninns
20.2- RaNGESizs:::ammis wnmas nmmes 558665 00mss B sdnn
2.1.3 Linear SearchinC++,
2.2 ConceptsandModeling,
2.3 eratorS. ittt it e e e e e e e e e
23] INPUEHEratorS « :.:csw:swswes nmmss Sawms Swwms s 5ae
2.3.2 Outputlteratorsttt ennnnnennnn
2.3.3 ForwardIterators oo imiennnnnnnnn
2.3.4 BidirectionalIteratorsc..tueuri.o..
2.3.5 Random AccessIteratorsououuuuurne...
2.4 Refinement.
2.5 SUIMMATY ot e e e et e et e ettt e e e

Chapter 3 More about Iterators

3.1 [Iterator Traits and Associated Typesc......
311 ValueTypPes v s:osssssmmnssmmeisansss sampms ams s
3.1.2 Difference Type.ttt inneeennnnennnn
3.1.3 Reference and Pointer Types0ou.....
3.1.4 Dispatching Algorithms and Iterator Tags
3.1.5 PuttingItAllTogether
3.1.6 Iterator Traits without iterator_traits
3.2 Defining New COmMpPONentsS. ov v vttt m v e eeeenseaennns
3.2.1 Iterator Adaptors it ennnnnnnn
3.2.2 Advice for Defining anIterator

vii

Contents

3.3

3.2.3 Advice for Defining an Algorithm
SUMIMATY . . o o v vt e e e e e e e e et e e e et ae e

Chapter 4 Function Objects

4.1
4.2

4.3
4.4
4.5

Generalizing Linear Search.
Function Object Concepts

4.2.1 Unary and Binary Function Objects

4.2.2 Predicates and Binary Predicates
4.2.3 AssociatedTypes
Function Object Adaptors
Predefined Function Objects
SUNMAYY : s s ssoms s a@b §s wmug s s HEms s ands

Chapter 5 Containers

5.1

5.2

5.3

5.4

A Simple Container
5.1.1 AnArrayClassoviueunnn.
512 HowltWorks
5.1.3 Finishing Touches
Container Concepts. v v v it i it e
5.2.1 Containment of Elements
5:2:2 TIeTators : s ssmas s simas s adwme s 5 mdd & &% ws
5.2.3 The Hierarchy of Containers.............
5.24 The Trivial Container.
Variable Size Container Concepts
9.3:1 SeqUENCES +uuws rvsummeswasss nnwds s swe
5.3.2 Associative Containers.
5:3.3 AlloCAlOIS: vswis s s avnessomss s amass ane
Summaryot it e e e
5.4.1 Which Container Should You Use?.........
5.4.2 Defining Your Own Container

Part I Reference Manual: STL Concepts

Chapter 6 Basic Concepts

6.1
6.2
6.3
6.4

Assignable e
Default Constructible
Equality Comparable
Orderingciiiiiiiiimnnnennnens
6.4.1 LessThanComparable
6.4.2 Strict Weakly Comparable

Chapter 7 Iterators

7.1
Y.
7.3
7.4

Trivial Iterator.
INPUE EFALOT o ov i s vnsa « svmm s s ahs s womas s 96
Output lterator,
Forward Iterator iinenunn.

49

.......... 49
.......... 52
.......... 52
.......... 53
.......... 54
.......... 56
.......... 58
.......... 58

59

.......... 59
.......... 60
.......... 63
.......... 63
.......... 67
.......... 68
.......... 68
.......... 70
.......... 71
.......... 72
.......... 73
.......... 75
.......... 78
.......... 78
.......... 78
.......... 79

81
83

.......... 83
.......... 84
.......... 85
.......... 86
.......... 86
.......... 88

91

.......... 91
.......... 94
.......... 96

Contents ix
7.5 Bidirectional Iteratorttt 102
7.6 Random Access Iteratorot vttt i i it i 103

Chapter 8 Function Objects 109
8.1 BasicFunction Objectst iinnrnnnnn 110

811 Generator c. : csvsssssimss smwss Hemsss o0 s aEE s s 110
812 UnaryFUNCLION ... :swnwssomnpmesmmwmnssmensssoness 111
8.1.3 Binary FUNCHION < cn s s cswecomessmmmnss nmmssnmmsss 112
8.2 Adaptable Function Objects v it ii it 113
8.2.1 Adaptable Generatorttt 113
8.2.2 Adaptable Unary Function 114
8.2.3 Adaptable Binary Function0..... 115
8.3 Predicates e 116
8.3.1 Predicate e 116
8.3.2 BinaryPredicate. 117
8.3.3 Adaptable Predicate. 118
8.3.4 Adaptable Binary Predicatecuuu... 119
8.3.5 Strict Weak Ordering G EAEEN T REEEE B 119
8.4. Specialized ConceptS.ot ittt e 122
8.4.1 Random Number Generatorc...... 122
84.2 HashFUNGion . sus ::ssms:ssmusssnmes svmesnmaiss s 123
Chapter 9 Containers 125
9.1 General Container CoONCePLS v v v vt vttt ettt et ee e enn s 125
9.1l CONAINGT . i s coomss wmmss mmmy 56 simiE 6 simmes aQsms § 8 125
9.1.2 ForwardContainer.iiiiiuennnnennnnn 131
9.1.3 ReversibleContainerc.ciiiiiiiiennann 133
9.1.4 Random Access Containercuiiiuununnnn 135
9.2 SeQUENCESt ittt e e e e 136
9.25] SEQUENGE . : sismmssammss Gumss GusEs o ¥EE s s QUamE s s 136
9.2.2 FrontinsertionSequence 141
9.2.3 BacklInsertionSequence............. .0 143
9.3 Associative Containersuiiiirennennnann 145
9.3.1 Associative Containeri i 145
9.3.2 Unique Associative Containeruuouuue... 149
9.3.3 Multiple Associative Container 152
9.3.4 Simple Associative Container 153
9.3.5 Pair Associative Container 155
9.3.6 Sorted Associative Container00..... 156
9.3.7 Hashed Associative Container. 161
9.4 AllOCAtOr .. .ottt e e 166

b ¢ Contents
Part Il Reference Manual: Algorithms and Classes 173
Chapter 10 Basic Components 175
10.1 pair ..o e e 175
10.2 Iterator Primitives. it ittt 177
10.2.1 dterator_traitsttt 177

10.2.2 Tterator Tag Classesot i it i e i iee e 179

10.2.3 distancettt e e 181
1024 AAdVANCE . 65 5 wim s 63 s 5 5 wme 6 s s s 8 6 GEE 65 BN E s 183

10.2.5 IteratorBaseClass.......... e e e e 185

19;3 Qllocator sc::wmwsssmams: vmaess Gmm:s SRE S FBE 5 5 BEE§ 187
10.4 Memory Management Primitives 189
10.4.] CONSEIUCE s os vumes cmms s @@ s 55 B9 45 0HE &85 Huw s s 189

1042 AeSLIOY cws s nmmes ammes s mmess Smads smic #5506 68 190

10.4.3 uninitialized COPY . .« v v vt v vttt e it e e et e e 192

10.4.4 wuninitialized fillc.i it innnnnnn. 194

10.4.5 uninitialized fill nciiiiennnn.. 195

10.5 TemporaryBuffers 196
10.5.1 get_temporary buffer 197

10.5.2 return_temporary_buffer........................ 198
Chapter 11 Nonmutating Algorithms : 199
11.1 LinearSearchttt it 199
1111 find.o e e 199

11.1.2 find_df e e 200
11.1.3 adjacent find .« ssiwnssowssssanasssmmsssmsodss 202
11.14 find_first_of ittt it 204

11.2 Subsequence Matching i vinunnen... 206
11.2.1 searcht i e e 206
11,2.2 £ind end . s omssssmpssmmmss pmessssamsis $sess o 209
11.23 searchnttt 211

11.3 Counting Elementscuiuuiuenennennennnnns 214
11.3.1 count v ittt e e e e e e 214
11.3:2 count df .:cuonssunssss v isnmEss Samess@agssan 216

11.4 for_each i i i e e 218
11.5 Comparing TwWoORanges.ttt unnnennnn. 220
11.51 equalottt e e e e e e 220
11.5.2 MISHALCH: : swmirssmmmas smms s v mm s as Hw®ss nossss oy 222
11.5.3 1lexicographical _compare............cuiuuiuuunnnn 225

11.6 Minimum and Maximumttt rnnennnn.. 227
1061 MIN Gac 2z a6 65 § s 5 6 0 5 5 Sm 6 5 5 muh o s momm o s wm 227

11.6.2 mMAX ..ttt i e e e e e e 228

11.6.3 min_elementc.c ittt 229

11.64 max_elementttt 231

Contents xi

Chapter 12 Basic Mutating Algorithms 233
12:]1 '‘COpyINZRANEES «ne s : sisms s s wom e 5 e 5wt s 8 G@mE s § Dok s s amns 233
121 COPY « v vt et et e e e e e e e e e e 233
12.1.2 copy_backward 236
122 SWApPPINZ EIEMENtS . . . wow s v vvmp s s s mmme s simpmn s 8 wmis s & 65 237
12:2:]1 SWaAP': s s saoss aimi s ss aiod s aneis samass @hgisomns 237
12.2.2 1t@T_SWAD .« v v i o e e e e e e e e e 238
12.2.3 SWAD_TANEES oo e e e e e e e e e e 239
12:3 tranSfoOrM o c: comun s s nmme i s sws a5 @ 6E s & BEs § s HHE.G 5 6F 68 240
12.4 Replacing Elementst iiiiinnnnn. 243
12.4.1 replacet e e 243
12.4:2 Tepldce 3. . . wow s smmu s s GEE 56 Rmm e s s BEE E S 5 8. 244
12.4.3 1eplace_COPY « . v v v vttt e e e e e e e e 246
12.4.4 replace_copy_if 248
12.5 FIIMGRANGES : : wom i mumes sammes $0um s s POEE S Ha@ s 5 5863 249
s R s T 0 R 249
12.5.2 fill n oot e e e 250
12.5.3 generatet e 251
12,54 PeneTrate M :: vosmssvmmns vomess Bnas i wans s s &® 553 252
12.6 RemovingElements., 253
12.6.1 TEMOVEttt e e e e e 253
12.6.2 remove_if 255
12/6:3 TEeMOVE COPY ¢ : sommu s s simwia s 5 6o s i 556 555 @86 &5 amas 256
12.6.4 remove_copy_if 258
L206:5 UNTGUE: ; soom e mammss mmmn s s Bams s Seme i 5 €8s 5858 259
12.6:6° UNiQUEe _COPY : - siass c ¢ na s s 9ames ad®sis a5, 5 mmmo 262
12.7 Permuting Algorithms 264
12.7.1 TOVETSE . ottt ittt et e e e e e 264
12.7.2 TeVerSE _COPY « v vt v vttt ittt et e e 265
12.7.3 rotatet e 266
12.7.4 T0tate _CODY « v v v vttt e e et e e e e e 268
12.7.5 Next permutatiofic . « s sivw s c s womas soms o6 6000 5 o5 269
12.7.6 prev_permutation.ttt nnnnnn. 271
12.8 Partitionso ittt e e e e 273
12.8.1 partitiont e 273
12.8.2 stable_partition..............c.iiuiiiinnennnn.. 274
12.9 Random Shuffling and Sampling 275
12.9.1 random shuffle 276
12.9.2 random_samplettt e 277
12.9.3 random_sample_nt 279 .
12.10 Generalized Numeric Algorithms 281
12.10.) dCCUMULAEE o« s s siss s s smmms s Gams s GRERS s EORE 5 08T 281
12.10.2 inner_producCtttt e e 283
12.10.3 partial _SUmMo vttt e e e e e 285

12.10.4 adjacent_difference 287

xii . Contents

Chapter 13 Sorting and Searching 291
13.1 Sorting Rangest iiiitniennennennnnnennnnns 291
131 SOPE. .. conceccoeriomesbamissniamaesnnaassaassss 292
13.1.2 stable_SOTL : i cows s wiomssoamnsimunsssaesssomsss 294
13.1.3 partial _SOrtttt it e e 297
13.1.4 partial _SOTt_COPY « « v v v v v v vt v et sttt e e e naa e e 300
13.1.5 nth_elementttt innnnnnnnnnnnees 301
13.1.6 dis_sorted « ::uweisanmassmnss umesss sme s GuwE s 303

13.2 Operationson Sorted Rangescutiuurnennnnnn 305
13.2.1 BinarySearch i 305
13.2.1.1 binary_search, 306

13.2.1:2 lower bound .:s s sswe s simnt s s@wes s §5@E &8 308

13.2.1.3 upper_boundttt 310

13.2.1.4 equal_rangecuuuunnnrcennnnn 313

13.2.2 Merging Two SortedRangescvuuunn 316
13:2:2]1 METP@ v s s swmsssimnss aames s gamss qums s 316

13.2.2.2 inplace_mMergeceeteeennuonnn 318

13.2.3 Set Operations on Sorted Ranges 320
13:2.3:1. dncludes .:swsiswmmismanss awmass swng e 321

13:2.3.2 S0t union . cswsssmmomesstoss s 586055 06685 324

13.2.3.3 set_intersectioniiiunnnnn 327

13.2.3.4 set_differencec.c0iinnn. 330

13.2.3.5 set_symmetric_difference 333

13.3 Heap OPeTations : « « « ¢« s = 5 wioe s 5 9mms s saoie s v e ss sussss 336
13.3.1 make_heapi ittt 336
13.3.2 push heapttt eeeeeeenns 338
13.3:3 pop_heap «::wssissanassssnmis s ss avan s Ge®6 5 9 339
18334 SOrtihEAD :: unwnsonmus s uis@s s MEm o AaEE 5 GEP s § 8 342
13.3.5 ds_heapttt e e 343
Chapter 14 Iterator Classes 345
14.1 ImsertIteratorsttt iniiinne it ennenns 345
14.1.1 front_insert_iteratorc.uouiuneeenn 345
14.1.2 back_insert_iteratorcceuiiiininnnnn 348
14.1.3 insert_iteratorc.uiiiittennnnenneenn 351

142 StreamIteratorst iiinnmeennnnnenneenns 354
14.2.1 istream iterator................. QMBI S @EE. S 354
14.2.2 oStream iterator. ueeeeeeeennennnennns 357
14.2.3 istreambuf_iteratoriiiiiinnnnnn 359
14.2.4 ostreambuf_iteratorcc0iiiiininnn 362

14.3 Teverse _iterator .: .cu - sam:sonies suahss saass saainss s 363

144 Taw StoTdge GtETALOT . v c s vmwmes siwmm s simpess snEEs swwsss s 368

Contents xiii
Chapter 15 Function Object Classes 371
15.1 Function ObjectBase Classest vi i nnnnnnnn 371
15.1.1 unary_functionc.etiiitrnrnnnanann 371

15.1.2 binary_function .:.:cescesvssssssnisvosims s sess 372

15.2 Arithmetic Operationst v ittt ittt e e i ene s 373
15,21 PLlUS . v vttt i e e e e e e 373

15.2.2 MINUS . &t ittt e ettt e e e e e e 375
15.2.3 multiplies . ..o i v i ittt ettt e e e e e 376
1524 QiVides . : vows:vmmisswmms s anmss muE ¢ SHWH 53 8o 378

15:2.5 modulus . : sisw s smmns s wwinmss 5o s Gan e 0aEEE 5 EE 379
15:2.:6 megate < .:isss s asioiammis s @R s nER il HEEE s DS 380

15.3 COMPATISONS: 5 : s ssim s s 5o s 0056 i 8,856 s G% s s o SsEs s aum 382
15.3.1 equal_to . ..o i it e e e e e 382
15.3.2 not_equal_to i ittt e e e 383

15,303 1@SS .t i ittt e e e e e e e 384

15.3.4 greater ittt e e e 386
1535 1E88 BOUAL w3 wows s smm s s NEwE § GHA S 3 HGEE § SEDE 387
15.3.6 gfeater equal . s w: s siwwm s s e s @9 s s smbes s @@ s 388

15.4 Logical Operationsot vimeemmeeennneennns 390
1541 logical and . : s siwwssswms s s 5wnss was i mmaiis @ae s 390
154.2 10gical 0To vttt ittt e e e e e e e 391

154.3 Jogical not v i vttt it e e e e e e 393

15.5 Identity and Projectiont iiiirrnnnnn 394
15.5.1 ddentityottt e e 394

15.5.2 projectlst.ttt e e 395
15.5.3 project2nd. i ittt e 397

15.5:4 selectlst ... i ittt e e e e 398

15.5.5 select2ndttt e e e 399

15.6 Specialized Function Objectsc.uiivrnennenn. 400
1561 hashi..:veossosmesanassissases saoms snsmesoigans 400

15.6.2 subtractive_rngiiiiitrnan 402

15.7 Member Function Adaptorsc.c.uieuirnrennnn. 403
15.7.1 mem_fun_t e e 404

15.72 mem_fun_ ref t, 406

1573 mem_funl t......... ...ttt e e 408

15.74 mem_funl ref t, 410

15.7.5 consSt mam FUA £ . vsvnmisvnmssouass sasmss aams 412

15.7.6 const_mem fun_ ref t 414

15.7.7 const_mem_funl t................c.0iuiiuunenunnnn 416

15.7.8 const_mem funl ref t0..... 418

15.8° Other Adaptorsttt et een 421
15.8.1 binderlstttt e 421

15.8.2 binder2ndt e 422

15.8.3 pointer_to_unary_function 424

15.8.4 pointer_to_binary_function 426

15.8.5 unary_negate

Contents

15.8.6 binary negatec..o..n
15.8.7 unary_composeonn.n
15.8.8 binary_composeiieannn

Chapter 16 Container Classes

161 SEQUENCES : comim s s soms s aous s simmw s v 9@ o 8 s
T6.)il VECLOD 5 s svamss smim,s ¢ mnmis s 5. 886 5 § 56
16.1:2 1istusns:isnomsisanmes nasdsoaasngsss
T6:1:3 SIiST wwi s vongssnomes wmme s 8 08d s s 65
16.1.4 deque.......... .00t

16.2 Associative Containers
16.2.1 set ... i e e
16.2.2 Map .. i it e e
16.2.3 multiset it
16.2.4 multimap uennn.n.
16.2.5 hash_set
16.2.6 hash MaP : s cee s wmwsssnmess mamss 5o
16.2.7 hash_multisetc.....
16.2.8 hash_multimapc......

16.3 Container Adaptors.uoviuuunnn..
16.3.1 stackoii it
16.3.2 qUeUe i it e e
16.3.3 priority queue

Appendix A Portability and Standardization

A.1 LanguageChanges
A.1.1 The Template Compilation Model
A.1.2 Default Template Parameters
A.1.3 Member Templates
A.1.4 Partial Specialization
A.1l.5 NewKeywords

A.2 LibraryChanges
A21 AllOCAtOTS. ¢ s v s s sism s womn s s waw s s
A.2.2 Container Adaptors..................
A.2.3 Minor LibraryChanges

A.3 Naming and Packaging

Bibliography

Index

