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FOREWORD

Everyone concerned with the teaching of physics at
the advanced undergraduate or graduate level is aware of the
continuing need for a modernization and reorganization of
the basic course material. Despite the existence today of
many good textbooks in these areas, there is always an
appreciable time-lag in the incorporation of new viewpoints
and techniques which result from the most recent developments
in physics research. Typically these changes in concepts
" and material take place first in the personal lecture notes
of some of those who teach graduate courses. Eventually,
printed notes may appear, and some fraction of such notes
evolve into textbooks or monographs. But much of this
fresh material remains available only to a very limited
audience, to the detriment of all. Our series aims to fill
this gap in the literature of physics by presenti¥ng occasion-
al volumes with a contemporary approach to the classical
topics of physics at the advanced undergraduate and graduate
level, Clarity and soundness of treatment will, we hope,
mark these volumes, as well as the freshness of the approach.

. Another area in which the series hopes to make a
contribution is by presenting useful supplementing material
of well-defined scope. This may take the form of a survey
of relevant mathematical principles, or a collection of
reprints of basic papers in a field. Here the aim is to
provide the instructor with added flexibility through the
use of supplements at relatively low cost.

The scope of both the Lecture Notes and Supplements
is somewhat different from the FRONTIERS IN PHYSICS Series.
In spite of wide variations from institution to institution
as to what comprises the basic graduate course program,
there is a widely accepted group of "bread and butter' courses
that deal with the classic topics in physics.- These include:
mathematical methods of physics, electromagnetic theory,
advanced dynamics, quantum mechanics, statistical mechanics,
and frequently nuclear physics and/or solid-state physics.
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xiv Series Editor's Foreword

It is chiefly these areas that will be covered by the
present series. The listing is perhaps best described as
including all advanced undergraduate and graduate courses
which are at a level below seminar courses dealing entirely
with current research topics.

The above words were written in 1962 in collaboration
with David Jackson who served as co-editor of this series
during its first decade. They serve equally well as a
Foreword for the present volume, which offers to the physics
or engineering student a lucidly organized readable short
text from which he or she can acquire much of the important
mathematical knowledge necessary for a professional career.
Professor Wyld's book possesses the further virtue of
explaining in some .detail the physics which underlies the
mathematical problems considered therein, so that it provides
an opportunity for students to learn more about physics, as
well as many of the essential mathematical methods of physics.
H. W. Wyld has made a number of significant contributions to
theoretical physics, and is noted for the clarity of his
lectures and his writing. It is a pleasure to welcome him
as a contributor to this series. '

David Pines



PREFACE

This book is a written version of the lecture course
I have given over a number of years to first-year graduate
students at the University of Illinois on the subject of
mathematical methods for physics. The course (and the book)
are intended to provide the students with the basic mathe-
matical background which they will need to perform typical
calculations in classical and quantum physics. The level is
intermediate; the usual undergraduate course in advanced
calculus should be an adequate prerequisite and would even
provide some overlap (e.g. Fourier series) with the subjects
covered in the present work. The treatment is limited to
certain standard topics in classical analysis; no attempt is
made to cover the method of characteristics, Hilbert space,
or group theoretical methods. What I have tried to do is
provide a short readable textbook from which the average
physics or engineering student can learn the most important
mathematical tools he will need in his professional career.
The physics which lies behind the mathematical problems is
all explained in some detail, so that the treatment should
be intelligible also to pure mathematicians and might even
provide an introduction to some of the advanced texts by
mathematicians on the subject.

The mathematical methods sequence, as presently _
constituted at the University of Illinois, consists of three
halfwsemester courses, i.e.,all together 3/4 of an academic
year. Together with a fourth half-semester course in
classical mechanics, these courses provide a basis for more
advanced work in electrodynamics, quantum mechanics,
particle, nuclear, and solid state physics. The subject
matter of the three parts, intentionally kept independent,
and the corresponding chapters in the present book, are:

I. Homogeneous Boundary Value Problems and
Special Functions. 1-6
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IT. Inhomogeneous Problems, Green's Functions, and
Integral Equations. 7-9 )

ITII. Complex Variable Techniques. 10-14

The low level of mathematical rigor which is custo-
marily found in the writing of physicists will also be found
in the present work. I feel that students seriously con-
cerned with rigor should consult the mathematicians. I have,
however, attempted to give, at appropriate spots, page
references to works in which rigorous mathematical proofs
and accurately worded theorems can be found.

o Finally, I want to record here my great debt to
Mary Ostendorf for the excellent job she did in typing the
manuscript.

H. W. WYLD
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HOMOGENEOUS BOUNDARY
VALUE PROBLEMS
AND

SPECIAL FUNCTIONS

CHAPTER 1 THE PARTIAL DIFFERENTIAL EQUATIONS OF
MATHEMATICAL PHYSICS

1.1 INTRODUCTION

A large fraction of classical, and also quantum,
physics uses a common type of mathematics. Certain partial
differential equations occur over and over again in dif-
ferent fields. The methods of solution of these eqﬁations
and the special functions which arise are thus generally
useful tools which should be known to all physicists. The-
purpose of this book is to provide a guide to the study of
this part of mathematics and to show how it is used i&'
various physical applications.

Similar courses aresoffered in mathematics depart-
ments. There, ocne is usually concerned with the rigorous
logical development of the mathematics. The student inter-
ested in such matters should and must go to the mathema-
ticians. Here we will minimize the rigor and concentrate
on a fough and ready approach to applicationms.

We start by reviewing the physical basis of the
various equations we wish to solve.

H. W. Wyid, Mathematical Methods for Physics ISBN 0-8053-9856-2; 0-8053-9857-0 pbk.
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2 MATHEMATICAL METHODS FOR PHYSICS
1.2 'HEAT CONDUCTION AND DIFFUSION

The flow of heat through a medium can be described
by a flux vector f, whose direction gives the direction of
the heat flow and whose magnitude gives the magnitude of
the heat flow in cal./cm. 2/sec. This vector F is related
to the gradient of the temperature T by the thermal con-

ductivity K of the medium:

f=-KgradT. (1.2.1)

We also introduce the specific heat ¢ and the density p of
the“Tnedium.

In terms of these quantities we can write two
different but equal expressions for the rate of change

with time t of the heat Q in a volume V:

dA
Q. ra3c oL = aX.
dt jvdxc"at JaE-F
S
=Id§-KgradT
S S
= ‘]" d3x div(Kgrad T). (1. 2.2)
\%4

Here the last step follows from the mathematical identity

known as Gauss' theorem,
[ 4K F= [ &xaivF, (1.2.3)
S \

valid for any vector field F. Since the volume V- is arbi-

trary, we obtain from (1. 2.2) the relation



1  PARTTAL DIFFERENTIAL EQUATIONS ' 3
c p%% = div(Kgrad T), (1.2.4)

or, if K is a constant,

2 13T
== 1, 2,
voT % 3t | ( 5)

with » =K/cp and

2 2 2
V2=divgrad= B 4 2 + o . (1.2.6)
2 2 2
ox oy dz

A similar equation is obtained for processes in- .
volving the diffusion of particles. If n(;, t) is the con-
centration of particles (number/cm. 3), the flux of particles

is given by
F=-c gradn,

where C is a constant. We can then write two expressions
for the rate of change with time of the number N of

particles in a volume V:

A d3x@=-j‘d§'-ﬁ=cj‘ Sxdiv(gradn). ~ (1.2.7)
de ¢y T ot Yy v

Since the volume V is arbitrary, we obrtain

on
3t ° (1.2.8)

V2n =

Al
I3

The heat conduction equation (1.2.5), or diffusion
equation (1.2.8), is a standard equation of mathematical
physics. In the important special case of no time de-

pendence, T or n independent of time, we obtain Laplace's



4 MATHEMATICAL METHODS FOR PHYSICS

equation:
2
vT=0 or vn=0. . (1.2.9)

For the less restrictive_special case of exponential time

- k2t = -Ck2
dependence, T(r,t) =e nk tu(r) or n(r,t) ~e Ck tu(§3, we
obtain the Helmholtz equation:
@ + Hu@ = o. (1. 2.10)

1.3 QUANTUM MECHANICS -

The potential V in Schrodinger's equation,

h2

T om

vy + vy = in

2. (L.3.1)

makes each quantum mechanics problem a special case. If

V=0, we find

2, . 2m .
Vw—-l-?l-%%, . (1.3.2)

which is the diffusion equation with an imaginary diffusion

constant. If we assume an exponential time dependence,

E
, -i=t 2 2
Y(r,t) = u(r) e h R E = % 5 (i.3.3)

we again find the Helmholtz equation (1. 2.10).



