Theory and Practice

4

SA—Hib 557

[%] Weintraub, S.H. (B45%H) =




3

Differential Forms —Theory and Practice

A

hR

ENEFHFEES

IR

R 3 e e FE

HARBIN INSTITUTE OF TECHNOLOGY PRESS




FE A EE 08-2015-028 S

Differential Forms, 2e
Steven H. Weintraub
ISBN:9780123944030
Copyright © 2014 Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by Elsevier ( Singapore) Pte Ltd. and Harbin Institute of
Technology Press

Copyright © 2015 by Elsevier (Singapore) Pte Litd. All rights reserved.

Elsevier ( Singapore) Pte Ltd.

3 Killiney Road, #)8-01 Winsland House I, Singapore 239519

Tel: (65)6349-0200 Fax: (65) 6733-1817

First Published 2015

2015 FEHI IR

Printed in China by Harbin Institute of Technology Press under special arrangement with Elsevier ( Singapore )
Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR, Macao SAR and Taiwan.
Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil
and Criminal Penalties.

AR HFCRENRH Elsevier ( Singapore) Pte Ld. BAUM RIE Tl KFH B AR EKEREARE K
T ABUBEFHEHBEHN(AOFEFE RITULEE) HREFNEE. RE2FTZHEO, M hER
EEPGE BRI RINFERZHR.

AR EIRWA Elsevier Bithinss , TREE N EHE .

B P74 B (CIP) ¥iiE

W= B ie 5 %k > = Differential Forms: Theory and Practice: 3% 3/ ( 3£ ) 1R ¥¥ 557 i
(Weintraub, S. H. ) . —M/RIE e /R E Tl R 5F AL ,2015. 8
ISBN 978 -7 —5603 —5518 —4

[.O-- T.0#"- I OMSILA-#EL NV.DO0186.1
o [ hi A B 1E CIP $ 8B 5 (2015) 55 176565 5

RipE XER

RERE Kkr HESF

HERIT IEX

HARERTT  MRIREE L K4 kit

0 ub MARENE KR EEMNEE 105 #4 150006
B 0451 - 86414749

Ht  http://hitpress. hit. edu. cn

R raIRETT TR REENRI

787Tmmx1092mm 1/16 E[3K 26.25 FH 471 TF
2015468 A% 1 R 201548 A% 1 IREIR
ISBN 978 -7 —5603 —5518 —4

58.00 JT

Fl & HH I F W
SIS

(4 ) e i v R i () 52 , FRAL 7 ST IR 48 )



To my mother and the memory of my father



WL R, FEEANEELI:  www. ertongbook. com



Preface

Differential forms are a powerful computational and theoretical tool.
They play a central role in mathematics, in such areas as analysis
on manifolds and differential geometry, and in physics as well, in
such areas as electromagnetism and general relativity. In this book,
we present a concrete and careful introduction to differential forms,
at the upper-undergraduate or beginning graduate level, designed with
the needs of both mathematicians and physicists (and other users of
the theory) in mind.

On the one hand, our treatment is concrete. By that we mean that
we present quite a bit of material on how to do computations with
differential forms, so that the reader may effectively use them.

On the other hand, our treatment is careful. By that we mean that
we present precise definitions and rigorous proofs of (almost) all of
the results in this book.

We begin at the beginning, defining differential forms and show-
ing how to manipulate them. First we show how to do algebra with
them, and then we show how to find the exterior derivative d¢ of
a differential form ¢. We explain what differential forms really are:
Roughly speaking, a k-form is a particular kind of function on
k-tuples of tangent vectors. (Of course, in order to make sense of
this we must first make sense of tangent vectors.) We carry on to
our main goal, the Generalized Stokes’s Theorem, one of the central
theorems of mathematics. This theorem states:

THEOREM (Generalized Stokes’s Theorem (GST)). Let M be an
oriented smooth k-manifold with boundary d M (possibly empty) and
let 9 M be given the induced orientation. Let ¢ be a (k — 1)-form on
M with compact support. Then

Jute= Lo
M oM



v Preface

This goal determines our path. We must develop the notion of an
oriented smooth manifold and show how to integrate differential forms
on these. Once we have done so, we can state and prove this theorem.

The theory of differential forms was first developed in the early
twentieth century by Elie Cartan, and this theory naturally led to
de Rham cohomology, which we consider in our last chapter.

One thing we call the reader’s attention to here is the theme of
“naturality” that pervades the book. That is, everything commutes
with pull-backs—this cryptic statement will become clear upon reading
the book—and this enables us to do all our calculations on subsets of
RR”, which is the only place we really know how to do calculus.

This book is an outgrowth of the author’s earlier book Differential
Forms: A Complement to Vector Calculus. In that book we introduced
differential forms at a lower level, that of third semester calculus. The
point there was to show how the theory of differential forms unified
and clarified the material in multivariable calculus: the gradient of
a function, and the curl and divergence of a vector field (in R3) are
all “really” special cases of the exterior derivative of a differential
form, and the classical theorems of Green, Stokes, and Gauss are all
“really” special cases of the GST. By “really” we mean that we must
first recast these results in terms of differential forms, and this is done
by what we call the “Fundamental Correspondence.”

However, in the (many) years since that book appeared, we have
received a steady stream of emails from students and teachers who
used this book, but almost invariably at a higher level. We have thus
decided to rewrite it at a higher level, in order to address the needs
of the actual readers of the book. Our previous book had minimal
prerequisites, but for this book the reader will have to be familiar with
the basics of point-set topology, and to have had a good undergraduate
course in linear algebra. We use additional linear algebra material,
often not covered in such a course, and we develop it when we need it.

We would like to take this opportunity to correct two historical
errors we made in our earlier book. One of the motivations for develop-
ing vector calculus was, as we wrote, Maxwell’s equations in
electromagnetism. We wrote that Maxwell would have recognized
vector calculus. In fact, the (common) expression of those equations
in vector calculus terms was not due to him, but rather to Heaviside.
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But it is indeed the case that this is a nineteenth century formulation,
and there is an illuminating reformulation of Maxwell’s equations
in terms of differential forms (which we urge the interested reader to
investigate). Also, Poincaré’s work in celestial mechanics was another
important precursor of the theory of differential forms, and in partic-
ular he proved a result now known as Poincaré’s Lemma. However,
there is considerable disagreement among modern authors as to what
this lemma is (some say it is a given statement, others its converse).
In our earlier book we wrote that the statement in one direction was
Poincaré’s Lemma, but we believe we got it backwards then (and
correct now). See Remark 1.4.2.

We conclude with some remarks about notation and language.
Results in this book have three-level numbering, so that, for exam-
ple, Theorem 1.2.7 is the 7" numbered item in Chapter 1, Section 2.
The ends of proofs are marked by the symbol [. The statements of
theorems, corollaries, etc., are in italics, so are clearly delineated. But
the statements of definitions, remarks, etc., are in ordinary type, so
there is nothing to delineate them. We thus mark their ends by the
symbol <. We use A C B to mean that A is a subsetof B,and A C B
to mean that A is a proper subset of B. We use the term “manifold”
to mean precisely that, i.e., a manifold without boundary. The term
“manifold with boundary” is a generalization of the term “manifold,”
i.e., it includes the case when the boundary is empty, in which case it
is simply a manifold.

Steven H. Weintraub
Bethlehem, PA, USA
May, 2013
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1 Differential Forms in R”, I

In this chapter we introduce differential forms in R" as formal objects
and show how to do algebra with them. We then introduce the oper-
ation of exterior differentiation and discuss closed and exact forms.
Our discussion here is completely general, but for the sake of clarity
and s3implicity, we will be drawing most of our examples from R!, R?,
or R”.

The special case n =3 has some particularly interesting features
mathematically, and corresponds to the world we live in physically.
In Section 1.3 of this chapter, we show the correspondence between
differential forms and functions/vector fields in R3.

1.0 Euclidean spaces, tangent spaces, and tangent
vector fields

We begin by establishing some notation and by making some subtle
but important distinctions that are often ignored.
We let R denote the set of real numbers.

DEFINITION 1.0.1. For a positive integer n, R" is
R"” = {(x1,...,x,) | x; € R}. o

In dealing with R!, R?, and R>, we will often use (x), (x, y), and
(x, y, z) rather than (x1), (x1, x2), and (x1, x2, x3), respectively, as
coordinates.

We are about to introduce tangent spaces. For some purposes, it is
convenient to have a single vector space that serves as a “model” for
each tangent space, and we introduce that first.

Differential Forms, Second Edition. http://dx.doi.org/10.1016/B978-0-12-394403-0.00001-3
© 2014 Elsevier Inc. All rights reserved.



2 Differential Forms

DEFINITION 1.0.2. For a positive integer n, R" is the vector space

ai
v=| :|]a R
ap
with the operations
ay b ay + by ai cay
+1: | = : and c| ! | = : . o
an b, an + b, an cay
DEFINITION 1.0.3. Let p=(xy,...,x,) € R". The tangent space
R’[’, =T,R"toR" at p is
ai
(27

p

Let us carefully discuss the distinction here. Elements of R” are
points, while for each fixed point p of R”", elements v, of T,R" are
vectors. For a fixed point p of R", if v, € T,R", we say that v, is a
tangent vector based at that point, so that 7,R" is the vector space of
tangent vectors to R” at p. This is indeed a vector space as we have
the operations of vector addition and scalar multiplication given by

ai by a + by al caj
+1 = : and ¢ :

a b a, +b a ca
nd, ndp n+np ndp ndp

We say that R" serves as a model for every tangent space R} as we
have an isomorphism from R" to R7 given by

ai ai
a an,

Geometrically, it makes sense to add tangent vectors based at the
same point of R", and that is what we have done. But it does not make
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geometric sense to add tangent vectors based at different points of R",
nor does it make geometric sense to add points of R”, so we do not
attempt to define such operations.

Let us emphasize the distinctions we have made. Often one sees
points and vectors identified, but they are really different kinds of
objects. Also, often one sees tangent vectors at different points iden-
tified but they are really different objects.

What we have just said is mathematically precise, but also makes
sense physically. Consider, for example, a body under the gravitational
influence of a star. The body has some position, i.e., it is located at
some point p of R3, and the gravity of the star exerts a force on the
body, this force being given by a vector v, whose direction is toward
the star and whose magnitude is given by Newton’s law of universal
gravitation. Furthermore v, is indeed based at p as this is where the
body is located, i.e., this is the point at which the force is acting.
Thus we see a clear distinction between the position (point) and force
(vector based at that point). If our body, located at the point p, is under
the influence of a binary star system, with v, the force vector for the
gravitational attraction of the first star and w, the force vector for
the gravitational attraction of the second star, then their sum v, +w),
(given by the “parallelogram law”) is the net gravitational force on
the body, and this indeed makes sense. On the other hand, if v, is a
tangent vector based at p and w, is a tangent vector based at some
different point g, their sum v, + w, is not defined, and would not
make physical sense either, as what could this represent? (A body
can’t be in two different places at the same time!)

Next we come to the closely related notion of a tangent vector field.

DEFINITION 1.0.4. A tangent vector field v on R" is a function v
that associates to every point p € R” a tangent vector to R” based at
p, i.e., a tangent vector v, € T,R". Thus we may write v(p) = v,
for every p € R". o

EXAMPLE 1.0.5. For any n-tuple of real numbers (ay, ..., a,), we
have the constant vector field

aj

an
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given by
ai
v(p) =
and,
for any point p = (x1, ..., x,) € R".

In particular, for any i between 1 and n, if (a1,...,a,) =
@©,...,0,1,0,...,0)withthe entry of 1 in the i th position, we denote
the corresponding constant tangent vector field by e’ and its value at
the point p by e’ (p) = e’,. o

The notation €' is a bit ambiguous, as e’ is a vector field on R” but
the notation does not make clear what the value of » is. However, this
will always be clear from the context.

In dealing with R” for n < 3, we will often use i, j, k rather than
el e2, e

Now, while it is improper to identify tangent vectors based at dif-
ferent points, it certainly is proper to consider constant tangent vector
fields. (When people do identify tangent vectors based at different
points, what they really should be doing is considering tangent vector
fields.)

We observe that it makes sense to add two tangent vector fields:
(v + w), = v, + w,, for every point p; and to multiply a tangent
vector field by a scalar: (cv), = cv,, for every point p. In particular,
if v is the constant vector field in the above definition, then v =
are! + aze? + - + a,e”.

As a matter of notation, we will maintain the distinction that v
(no subscript) denotes a vector field and v, denotes a tangent vector
at the point p. However, often for emphasis we will use upper-case
boldface letters to denote vector fields. Also, we remark that we use
superscripts rather than subscripts (i.e., e rather than e;), as if we
were to use subscripts, we would wind up using double subscripts
(e.g., &;,) and we wish to avoid that.

Now consider the physical situation of a particle moving in R”,
say the earth orbiting the sun. If the particle is located at the point
p, then we can consider its velocity vector as a tangent vector to
R™ at p. Conversely, given a vector field v, we may imagine that a
point p represents the position of a particle and the tangent vector v,
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represents its velocity. In this physical situation, given any point p,

we may imagine that we start off at p at time ¢ = 0, and move with

velocity v for 0 < ¢ < 1, finishing up at position g at time ¢ = 1. (For

example, in the case of the earth orbiting the sun, with time measured

in years, we would have g just about equal to p.) We can always find

g by “integrating the vector field.” This is something we do not want

to discuss here, except to note that there is one very simple but very

important case, that of a constant vector field. In this case, if p is the
ai

point (xi, ..., Xx,) and v is the constant vector field | : [, then g is
Qn

the point

q=x1+ai,..., xp+ay).

In this case we will write
q=p-+V.

(We emphasize that this notation is really an abuse of language. We
are really not adding v to p; rather we are starting at p and following
v. But it is so concise and convenient that its virtues outweigh its
vices.)

1.1 The algebra of differential forms

In this section we define differential forms and see how to do algebra
with them. For the first part of our development, in the next few
sections, we will be treating them as formal objects. Later on, we will
of course see their true meaning.

DEFINITION 1.1.1. Let R be an open set in R”. Then
C*®(R) ={f: R — R | f has all partial derivatives of all
orders at every point p of R}.
A function f € C®(R) is said to be smooth on R. o

For example, f(x, y) = e*(sin (x + yz)) is a smooth function on
R?, and f(x, y) = 1/(x%+ y?) is a smooth function on R2 — {(0, 0)}.



6 Differential Forms

DEFINITION 1.1.2. Let R be an open set in R”. Let k be a fixed
nonnegative integer. A monomial k-form on R is an expression

fdxi, ---dx;,

where f is a smooth function on R.

A k-form on R is a sum of monomial k-forms on R.

A differential form ¢ on R is a k-form on R for some k. In this
situation, k is the degree of ¢.

We let QK(R) = {k-forms on R} and *(R) = {differential forms
on R}. o

We will be using lower-case Greek letters to denote differential
forms.

When dealing with differential forms in R', R2, or R?, we will
often use dx, dy, and dz instead of dx|, dx;, and dx3, respectively.

So far, dxy, ..., dx, are just symbols. (That is what we mean by
saying that these are formal objects.)
We let I be a multi-index, i.e., [ =(iy, ..., i) is a sequence of

positive integers. (We allow k to be 0.) We will adopt the notation
dx; to denote the string (possibly empty) dx; = dx;, - - - dx;,. Thus
a general k-form ¢ can be written as ¢ = A1dx;, + Ayxdxp, +--- +
Amdxp,, where all of dxy,, ..., dxj, have length k. In this case, we
will also say that Ay, Aj, ..., A,, are the functions involved in ¢.

In case ¢ = Aidx;, + Axdxy, + --- + Apdxj, with each of the
functions Ay, ..., A,, constants, we will say that ¢ is a constant form.

EXAMPLE 1.1.3.
(0) ¢ = x2y + €% is a O-form.
(1) ¢ = x2dx + (yz + 1)dz is a 1-form.
(2) o =xyzdydz+xe’dzdx +2dxdy is a 2-form.
(3) ¢ = (x? 4+ xyz + z3)dx dy dz is a 3-form. o

Addition of differential forms is done term by term. The sum p =
¢ + ¥ 1s only defined when ¢ and ¥ both have the same degree k, for
some k, in which case p also has degree k. Also, addition is required
to be commutative and associative.



