

Essentials of Physical Geography

Ralph C. Scott

Towson State University
Towson, Maryland

West Publishing Company

St. Paul

New York

Los Angeles

San Francisco

COPYRIGHT © 1991 By WEST PUBLISHING

COMPANY

50 W. Kellogg Boulevard

P.O. Box 64526

St. Paul. MN 55164-0526

All rights reserved

Printed in the United States of America

876543210 98 97 96 95 94 93 92 91

Library of Congress Cataloging-in-Publication Data

Scott, Ralph C. (Ralph Carter), 1944-

Essentials of physical geography / Ralph C. Scott.

cm.

Includes index.

ISBN 0-314-79264-3

1. Title 1. Physical geography.

GB54.5.S37 1991

910'.02 -- dc20

90-44892

CIP

PRODUCTION CREDITS

Interior Design: David Farr.

IMAGESMYTHE, INC.

Cover Design: Katherine Townes

Cover Image: Mike Surowiak, @ Tony Stone Worldwide

Copyeditor: Kim Kaliszewski

Cartographer: Alice B. Thiede, Carto-Graphics

Artwork: Rolin Graphics

Compositor: Carlisle Communications, Ltd.

The map on page 394 is supplied by Marie Tharp, 1 Wash-

ington Ave., South Nyack, NY 10960.

CHAPTER OPENER CREDITS

Introduction The Upper Snake River and Grand Teton Mountains of northwestern Wyoming, (Clark T. Heglar, The Image Bank) Chapter One The Earth, as seen from space is dominated by clouds and water. (Department of the Interior. U.S. Geological Survey) Chapter Two A cloud-filled sky is reflected in a peaceful lake setting. (H. Armstrong Roberts) Chapter Three A recent show up in the mountains. (Ross M. Horowitz, The Image Bank) Chapter Four Wonderful color is reflected out on the sea with these sailboats. (Ken Fraser, FPG International) Chapter Five A beautiful sunset. (Don King, The Image Bank) Chapter Six Weather satellite view of an Atlantic hurricane and a frontal cyclone over the northeastern United States. (NOAA, ILM Visuals) Chapter Seven Summer showers near Mt. Ruddle, Banff National Park, Alberta (T. Algire/H. Armstrong Roberts) Chapter Eight A splendid view of the beach. (M. Thonig/H. Armstrong Roberts) Chapter Nine The Apalachicola River, in Florida, is bordered by a forest of water-tolerant cypress trees. (W. Metzen/H. Armstrong Roberts) Chapter Ten Winter view of rows of corn stubble in central Missouri. (Marbut Memorial Slide Collection, American Society of Agronomy) Chapter Eleven Hawaii's Mt. Kilauea in eruption. (Joanna McCarthy, The Image Bank) Chapter Twelve Zigzag ridge patterns produced by the tilting and folding of resistant rock strata in the Central Appalachians. (U.S. Geological Survey) Chapter Thirteen An eroded sandstone rock formation in Laramie, Wyoming. (David Butler) Chapter Fourteen Entrenched meanders of the Upper Colorado River in San Juan County, Utah. (U.S. Geological Survey) Chapter Fifteen View of glacially sculptured Yosemite Valley, California. (B.F. Molnia) Chapter Sixteen Saharan landscape in southern Algeria. (H. Armstrong Roberts) Chapter Seventeen A volcanic island surrounded by a barrier reef in the Society Islands of French Polynesia. (Marcel Isy-Schwart, The Image Bank)

Preface

North America seems to be experiencing a long-overdue revival. Students, educators, and the general public are once again coming to realize that other places, and the events that occur in them, have an important bearing on our own lives. Especially crucial to our future well-being is the recent growth in public environmental consciousness. Our planet is a finely balanced and fragile one, and humanity now has a greater potential than ever before to alter permanently its physical characteristics. It is essential that the next generation of leaders gain an understanding and appreciation of the environment greater than that of the leaders of the past.

My primary goal in writing this book is to provide its readers with some understanding and appreciation of the world around them. The book is intended chiefly for college undergraduate students with limited physical science and geography backgrounds. Most of these students will likely be taking a geography course to help meet general university requirements; others, I hope will be taking it as an early course within a geography major program. This book is approximately 20 percent shorter than my previous textbook, *Physical Geography*, also published by West Publishing Company. Its somewhat reduced scope should make it easier to cover within the time constraints of a one-semester or one-quarter course.

The optional sequence of topics in a physical geography course has long been a popular subject of debate among those who teach in this field. Before I began writing this book, we surveyed a large group of physical geography instructors to assess their feelings on this important matter. A clear-cut majority believed that the

first of the "big four" subjects to be covered should be weather and climate, followed, in turn, by treatment of natural vegetation, soils, and landforms. I have followed this suggested order in this book. For those who prefer other sequences, the material in each of these sections is, I believe, sufficiently self-contained that there should not be any major problems of comprehension or continuity if the chapters are covered out of numerical order.

The approach I have used for each topic was called by one reviewer the "process/distribution approach." By this he meant that a certain amount of general science background material appears first to explain the origin and characteristics of the topic. This is followed by a discussion of the topic's geographical distribution and, finally, by the reasons for its distribution. Throughout the book, I have tried to stress the causative and distributional linkages among the various earth phenomena.

I have treated the subject of human interaction with the natural environment lightly in the main body of the text itself. This is not because this factor is unimportant; rather, it is because there is simply not enough space to systematically cover this crucial subject in an introductory physical geography textbook. Important environmental concerns are, however, discussed in the Case Studies found at the end of most chapters and in many of the Focus boxes scattered throughout the text. I hope that these studies will promote student interest, will illustrate the relevance of the material to contemporary issues, and will foster an increased environmental consciousness.

A number of additional learning aids have been provided in the text. At the beginning of each chapter is a subject outline and several Focus Questions that pose broad questions addressing the core subjects of the chapter material. Within the body of the chapters, key terms appear in boldface type for easy recognition, while other important terms are italicized. At the end of each chapter is a summary, a number of review questions, and a listing of the key terms. An index and extensive glossary appear at the end of the text, and appendix sections deal with the topics of scale conversions, maps and remote sensing, and weather map interpretation. In addition, you have probably already noted that the book is extensively illustrated with full-color photographs, maps, and diagrams.

West has also provided a comprehensive package of ancillaries that I believe will greatly aid adopters of this book. These include an instructor's manual, a laboratory manual, a student study guide, a computerized study guide available for IBM and Macintosh, and a computerized test bank for IBM, Macintosh, and Apple computers. A set of nearly 60 color slides or overhead transparencies of the more important maps and diagrams in the text is also available for teachers using the book. In addition, a free *PC Globe 3.0* program is available for adopters. Please contact the publisher for further information on these materials.

Acknowledgments

The writing of a book such as this is a massive and time-consuming undertaking, especially for a single author. Its preparation involves a great many individuals, all of whom are essential to its eventual successful completion.

I would first of all like to thank the editorial and production staff at West, some of whom I have never met, who enabled this book to become a reality. Foremost among these individuals is my Acquiring Editor, Clark Baxter, who persuaded me to write a second book just when I was beginning to recover from the first one. In addition, Nancy Crochiere, our Developmental Editor, has provided expert analyses of the numerous manuscript reviews and has kept me on the right track with regard to proper procedures. Beth Kennedy, our Promotion Manager, has been responsible for the development of advertising brochures and for making sure that they reached potential users of the book. Lastly, the individual who has almost been single-handedly turning my manuscripts into books is my good friend Nancy Roth, our Production Editor.

Another group of individuals whose long hours of work with the manuscript have been vital to both its content and quality have been the reviewers. The work of many of the reviewers of my book Physical Geography is also reflected in the content of this book, and I would again like to thank them all for their generous assistance. I wish particularly to thank seven reviewers who worked with the manuscript for Essentials of Physical Geography. They are William D. Brooks, Indiana State University: Anthony Orr Clarke, University of Louisville; Robert Cullison, Essex Community College: Donald W. Duckson Jr., Frostburg State University; Dennis Edgell, Kent State University; David Fitzgerald, St. Mary's University; Roland L. Grant, Eastern Montana College; Clark Hilden, Blue Mountain Community College: Solomon A. Isiorho, Indiana University-Purdue University, Fort Wayne; Rudi Kiefer, University of North Carolina-Wilmington; Steve LaDochy, California State University-Los Angeles; Francis Magilligan, Georgia State University; Bob Phillips, University of Wisconsin-Platteville; David R. Privette. Central Piedmont Community College; Robert Quinn, Eastern Washington University; Michael Sady, Western Nevada Community College; Brent R. Skeeter, Salisbury State University; Jim Switzer, Southwestern College; Paul Weser, Scottsdale Community College. I also want to thank John Morgan, of Towson State University, for his careful review of the map appendix material, and for supplying information on geographic information systems for use in the appendix.

Still another group of people who played a key role in this project were the artists and photo suppliers. I wish especially to thank Alice Thiede, who drew most of the maps appearing in the book, and the artists at Rolin Graphics, who produced most of the figures and graphs. The majority of the photos were supplied by John S. Shelton, the U.S. Geological Survey, JLM Visuals and H. Armstrong Roberts, Inc. Others were provided by David Butler of the University of Georgia, by my Towson State University colleagues Wayne McKim and John Morgan, and by my mother, Jerry Scott.

Lastly, I again owe a huge debt of gratitude to my wife Judi, who has spent countless hours typing, and on occasion editing, the manuscript. I wish also to thank my daughter Kelli, who provided valuable typing service during the latter, hectic stages of the manuscript preparation period.

Ralph C. Scott

Contents

Introduction

Preface xi
Introduction 1
The Discipline of Geography 2
Subdivisions of Geography 2
Fundamental Geographical Concepts
Selected References 5
Key Terms 5

Chapter One

The Planetary Setting 6

The Place of the Earth in the Universe 7
Planetary Motions 7
Large-scale Motions 7
Small-scale Motions 7
FOCUS BOX Formation of the Universe, Solar System, and Earth 8
Size and Shape of the Earth 10
Departures from Perfect Sphericity 11

Directions 12 Magnetic North and South Latitude and Longitude Latitude 13 Longitude 14 Determining Geographical Coordinates Time 15 Local Time 15 Standard Time 15 The International Date Line Daylight Savings Time 17 FOCUS BOX Determining Times The Seasons 18 Cause of the Seasons 19 Lengths of Day and Night 21 Summary 21 Review Questions Key Terms 22

Chapter Two

Earth's Atmospheric Envelope 23

Atmospheric Origin and Functions 24 Composition of the Atmosphere 25 Nonvariable Gases 25 Variable Gases 26 Particulates 26

FOCUS BOX Are Human Activities Depleting the Ozone Laver? 27

Vertical Characteristics of the Atmosphere 29
Weight, Density, and Vertical Extent 29

Thermal Layers 29

The Atmosphere, Weather, and Climate 31

Summary 31

Review Questions 32

Key Terms 32

CASE STUDY Air Pollution: A Global Environmental Problem 33

Chapter Three

Energy Flow and Air Temperature 36

Terrestrial Energy Sources 37

Energy Transfer Processes 37

The Global Energy Balance 38

FOCUS BOX Characteristics of Electromagnetic Radiation 40

World Temperature Pattern and Controls 41

Primary Temperature Controls 41

FOCUS BOX Temperature Scales 45

Secondary Temperature Controls 47

Summary 48

Review Questions 49

Key Terms 49

CASE STUDY Will Human Activities Alter the World Temperature Pattern? 50

Chapter Four

Air Pressure and Wind 52

Air Pressure 53

Causes of Air Pressure Variations 53

Global Distribution of Air Pressure 53

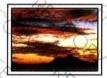
FOCUS BOX Air Pressure Measurement 56

Wind 57

Factors Controlling Wind Speed and Direction 58

General Circulation of the Atmosphere 61

FOCUS BOX Wind Measurement 62


Summary 70

Review Questions 70

Key Terms 71

CASE STUDY The Asiatic Monsoon 72

Chapter Five

Atmospheric Moisture 74

Phase Changes of Water 75

The Hydrologic Cycle 76

Humidity 78

Condensation and Sublimation: Processes and

Products 79

Precipitation 82

FOCUS BOX Precipitation Measurement 83

Summary 92

Review Questions 93

Key Terms 94

CASE STUDY Snow Belts of the Great

Lakes 95

Chapter Six

Weather Systems

Air Masses 98 Air Mass Formation and Types 98 Air Mass Movement and Modification 99 Secondary Circulation Systems of the Middle and High Latitudes 100 Traveling Anticyclones Weather Fronts 102 Frontal Cyclones 105 FOCUS BOX The Weather Map as a Forecasting Tool 106 Localized Storm Types of the Middle and High Latitudes 110 Tropical Weather 114 General Weather Characteristics of the Tropics 114 Weak Tropical Weather Disturbances 115 Hurricanes 116 Summary 119 Review Questions 120 Key Terms 120 CASE STUDY Hurricane Camille of 1969

Chapter Seven

Climates of the World

Climate Classification 124 FOCUS BOX Climagraphs 125 The Low Latitude Climates 125 Tropical Wet Climate 125 Tropical Wet and Dry Climate 128 Low Latitude Dry Climate 129 The Middle Latitude Climates 132 Dry Summer Subtropical Climate 132 Humid Subtropical Climate 134

Mid Latitude Dry Climate 135 Marine Climate 136 Humid Continental Climate 139 The High Latitude Climates Subarctic Climate 141 Tundra Climate 142 Polar Climate 144 Highland Climates 144 Summary 147 Review Questions 148 Key Terms 149 CASE STUDY Urban Climates

Chapter Eight

Water on and Beneath the Earth's Surface 152

Subsurface Water 153 Soil Water 153 Ground Water 154 FOCUS BOX Human Impact on Ground Water 156 Lakes 156 Origins of Lakes 157 Rivers 158 FOCUS BOX The Great Lakes Become Greater 159 Geographic Distribution and Significance 160

Temporal Variations in Stream Flow The Ocean 163 Origin, Distribution, and Extent 163 Physical and Chemical Characteristics Motions of the Ocean Waters Summary 170 Review Questions Key Terms 172

El Niño-An Ocean Current CASE STUDY with Worldwide Environmental Implications 173

Chapter Nine

Natural Vegetation 175

Global Vegetation Characteristics 176
Natural Vegetation Distribution Controls 178
Climatic Influences 179

FOCUS BOX The Environmental
Consequences of Acid Rain 180

Topographic Influences 182 Soil Influences 183 Influences of Organisms 183

World Distribution of Natural Vegetation 184

Forest Association 185
Grassland Association 194
Desert Association 197
Tundra Association 198
Mountain Vegetation 199
Summary 199

Review Questions 200

Key Terms 201

CASE STUDY The Destruction of the World's Tropical Rainforests 202

Chapter Ten

Soils 204

Soil Origin and Characteristics 205
Soil Color 206
Soil Texture 206
Soil Structure 207
Soil Air and Water 208
Organic Matter in the Soil 209

Cation Exchange and Soil pH 210 Soil Horizons 210

FOCUS BOX Soil Salinization—A Growing
Problem in Arid Lands 212

Factors in Soil Development 214

Parent Material 214

Relief 214

Organisms 215

Climate 215

Time 217

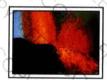
Soil Classification and World Soil Types 217

Soil Classification Systems 218

The 7th Approximation System 218

World Soil Types 218

Summary 227


Review Questions 228

Key Terms 229

CASE STUDY American Agriculture and

Accelerated Soil Erosion 230

Chapter Eleven

Landforms and the Earth's Interior 233

Basic Terminology and Concepts 234

Landform Classification 234

Genetic Approach to Landform Study 235

Earth's Interior 238

The Core 239

The Mantle 240

The Crust 240

Rocks and Minerals of the Earth's Crust 241

Major Categories of Rocks 242

FOCUS BOX Geothermal Heat as an Energy Source 246

Plate Tectonics 248

Evidence for Continental Drift 248

Plate Tectonics Processes 250

Summary 255

Review Questions 256

Key Terms 257

Chapter Twelve

Diastrophic and Volcanic Landforms 258

Diastrophism 259

Linear Folding-Processes and Features 259

Domes and Basins 262

Faulting 263

Earthquakes 268

Volcanism and Volcanic Landforms 269

Extrusive Volcanism 269

FOCUS BOX Earthquake Potential of the San

Andreas Fault 270

Intrusive Volcanism 275

Volcanic Erosion and Remnants 276

Summary 277

Review Questions 278

Key Terms 278

CASE STUDY The Eruption of Krakatau

Volcano 279

Chapter Thirteen

Weathering, Mass Wasting, and Karst Topography 282

Weathering 283

Types of Weathering 283

Global Distribution of Weathering Activities 286

Mass Wasting 287

Factors Influencing Mass Wasting 288

Types of Mass Wasting 289

FOCUS BOX Land Subsidence—Its Causes and Environmental Impact 292

Karst Topography 292

Cause and Global Distribution of Karst

Topography 293

Karst Features 294

Summary 298

Review Questions 299

Kev Terms 299

CASE STUDY Debris Avalanches Produced by

Hurricane Camille 300

Chapter Fourteen

Fluvial Processes and Landforms 302

Causes and Characteristics of Stream Flow 304

Drainage Systems and Patterns 304

FOCUS BOX International Boundary Changes

Along the Rio Grande 305

Stream Erosion, Transportation, and

Deposition 306

Fluvial Landforms 311

Fluvial Erosional Features 311

Fluvial Depositional Features 313

Summary 319

Review Questions 320

Kev Terms 320

CASE STUDY Will the Mississippi Change Its

Course? 321

Chapter Fifteen

Glacial Processes and Landforms 324

Glacier Formation, Distribution, and Features 325

Present Extent of Glaciation 325

Glacier Motion 326

Glacier Erosional Processes and Features 328

Glacier Depositional Processes and Features 329

Alpine Glaciers and Associated Landforms 330
Characteristics of Alpine Glaciers 330
Alpine Glacier Erosional Landforms 331
Alpine Glacier Depositional Landforms 333
FOCUS BOX Alaskan Glaciers—Surging and Betreating 334

Continental Glaciers and the Pleistocene 335

The Pleistocene Epoch 336

Landforms Produced by Continental Glaciers 338

FOCUS POX Footby Orbital Geometry and

FOCUS BOX Earth's Orbital Geometry and Climatic Change 339

Indirect Pleistocene Effects 343 Summary 344 Review Questions 344 Key Terms 345

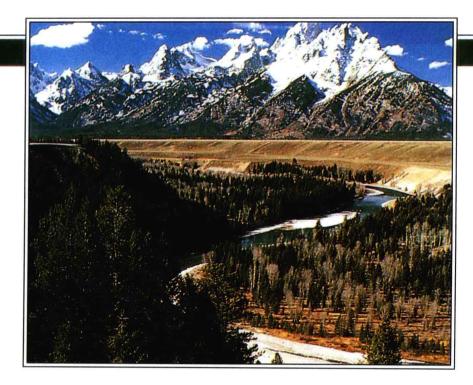
CASE STUDY A Glacial Catastrophe: The Spokane Flood 346

Chapter Sixteen

Eolian Processes and Desert Landscapes 348

The Wind as a Geomorphic Agent 349
Wind Sediment Transport Mechanisms 349
Eolian Environments 350
Wind Erosion 350
Wind Deposition 351
Desert Landscapes 356
Surface Characteristics of Deserts 356
Desert Landform Assemblages 358
FOCUS BOX The Desert and Off-Road
Vehicles 360
Summary 362
Review Questions 364
Key Terms 364
CASE STUDY The Expanding Deserts 365

Chapter Seventeen


Coastal Processes and Landforms 368

Coastal Processes 369
Coastal Landforms 371
Erosional Features 371
Depositional Features 373
Types of Coasts 375
Retreating Coasts 375
Advancing Coasts 378
Compound Coasts 379
Summary 380
Review Questions 380
Key Terms 380
CASE STUDY Barrier Beach Migration and

Coastal Development 381

Appendixes

A. Measurement Equivalencies 385 B. Maps and Remote Sensing 386 C. Weather Map Symbols 399 Glossary 403 Index 425

Introduction

THE DISCIPLINE OF GEOGRAPHY

ost fields of knowledge today are systematically defined; that is, they study everything about one *topic*. An example of a topically oriented discipline is biology, which is the study of living organisms. All lifeforms as well as the environmental factors that directly influence them fall within the bounds of accepted biological studies.

An alternate approach in defining a field of knowledge is to study everything from a single *perspective*. In this case, the topics that can be examined are not restricted, but each topic is properly examined only from the single perspective of the discipline. History, which studies how things change through time, is organized in this fashion. Another such discipline is **geography**, which is concerned with the locational aspects of phenomena. Because virtually all topics change through time and vary in location, neither history nor geography is topically constrained.

The phenomena that can be studied geographically include not only physical objects like people, rivers, or types of vegetation, but also less tangible things such as religious beliefs, military alliances, or tastes in music or clothing. The distributions of these phenomena are not random; everything has a reason for being located where it is. In nearly all cases, the distribution of one type of thing is influenced by the presence or distribution of other things. For example, factors such as climate, landforms, patterns of transportation routes, and the availability of housing and employment influence human population distributions. Factors such as availability of solar energy, proximity to water bodies, and elevation control world climate patterns. In examining the causes for the distributions of earthly phenomena, geographers cannot avoid noting that interrelationships exist among them. The systematic study of these interrelationships has therefore also become a focus of geographic research.

Geographers feel that most fields of knowledge, especially those with rigidly defined topical boundaries, do not adequately emphasize the broader relationships that exist between their topics and other phenomena. The familiar expression of being "unable to see the forest for the trees" is particularly applicable in this context. While many fields of study, by analogy, may provide their practitioners with detailed knowledge of individual trees, the geographer is more concerned with the characteristics of the forest as a whole. Geography is an integrative discipline, then, with a wide breadth of

coverage (see Figure I.1). Like a person assembling a jigsaw puzzle, the geographer's goal is to put enough pieces of knowledge about the earth and the universe in their proper locational settings to see the "big picture." The following definition summarizes the concepts presented in the preceding paragraphs: Geography is the study of the distributions and interrelationships of phenomena. The geographer is therefore concerned both with the locations of things and with the causes and consequences of those locations. A basic objective of geographic research is to understand better the nature of places, and especially how distributions of earth phenomena interact to cause similarities and differences between places. The ultimate goal of geography is to develop, through a sufficient understanding of spatial interaction, a comprehension of the entire earth as a functioning system.

Subdivisions of Geography

As the examination of a college textbook will show, the major academic disciplines are typically subdivided into

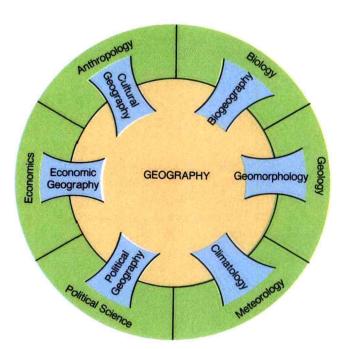


Figure I.1 Geography overlaps with most topically defined fields of knowledge, because each contains spatial components.

(Source: Reprinted with permission from Julia A. Tuason, "Reconciling the Unity and Diversity of Geography." Journal of Geography vol. 86, no. 5, p. 193.)

units of material. The field of geography is no exception. Although geography as a whole is defined by its method of approach rather than by topic, its subdivisions *are* topically defined. While the basic spatial emphasis remains, each branch of geography deals with a different category of earth phenomena.

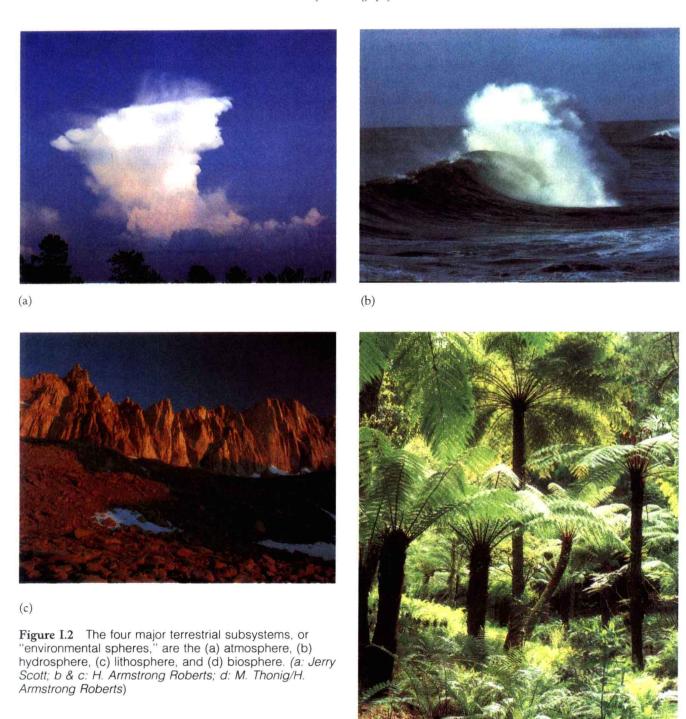
A hierarchy of geographical subdivisions exists, and in general, the more advanced a study is, the more narrowly its topical borders are defined. At the most general level, the field of geography is partitioned into two major branches: physical geography and human geography. Physical geography is concerned with locational aspects of natural earth phenomena—that is, with those not produced or primarily controlled by human beings. The four major divisions of physical geography are weather and climate, the earth's surface features (including landforms and water bodies), natural vegetation, and soils. Most of this textbook is devoted to the geographical analysis of these four subjects.

Human geography, conversely, deals with those subjects whose distributional patterns are largely or entirely controlled by people. Included are such topics as patterns of population, agricultural and industrial activities, urban areas, religion, transportation routes, political regions, and recreational facilities. A basic understanding of physical patterns, however, is important to the human geographer, as well as to any other informed person, because the earth's physical environment affects nearly all human activities.

In reality, the interaction of earth phenomena, both physical and human, produces a great deal of topical overlap, both in geography and in other disciplines. Geographers, because of their interests and breadth of training, are especially able to appreciate these interrelationships. Geography, then, is both a physical and a social science, and one of the geographer's chief goals is to emphasize the interconnections among the two groups of phenomena.

FUNDAMENTAL GEOGRAPHICAL CONCEPTS

The geographic distribution of the earth's physical features, as already noted, is not the result of chance, but exists in response to natural laws, which provide reasons for the characteristics and locations of terrestrial phenomena. A basic understanding of these laws makes the study of physical geography, and, indeed, of any physical science, much more logical and intellectually


satisfying. Explanations for the distribution of the earth's features will be an essential component of our geographic study throughout the book.

An important method of geographical analysis is the formulation of **regions** that display relative similarity in selected attributes. Regionalization simplifies and organizes patterns of earth phenomena and aids geographers in understanding why these patterns exist. Throughout this book, regional patterns of physical earth phenomena are displayed on maps and diagrams and their causes and characteristics are discussed.

The fact that all earthly phenomena are to some extent interrelated means that any action that affects one component will ultimately influence everything else. We can therefore view the earth as a single system of enormous complexity. A system is a set of interrelated components through which energy flows to produce orderly changes. In contrast to a closed system. which contains a finite and confined supply of energy. an open system has access to an unlimited supply of energy from one or more external sources. The earth system can be considered as an open system powered by two different "unlimited" energy sources. These consist of solar energy and of heat from the decay of radioactive elements inside the earth. The total quantity of energy reaching the earth system from these two sources is relatively constant but is capable of powering a great number of earth processes because of the many routes it can take as it permeates the earth system.

The earth system is composed of a number of interconnected subsystems, often described as "environmental spheres" (see Figure I.2). The four major subsystems are the atmosphere, the ocean of air that overlies the entire earth's surface; the hydrosphere, the water of the surface and near-surface regions of the earth; the lithosphere, the massive accumulation of rock and metal that forms the solid body of the planet itself; and the biosphere, the layer of living organisms of which we are a part. All four respond in various ways to the flow of energy and materials through the earth system. The resultant distributional patterns and movements of these subsystems form the basis for the material content of this book.

Human activities are increasingly altering or disrupting natural terrestrial processes. This disruption produces rapid environmental changes, often of an undesirable nature. Although this textbook deals primarily with the natural environment, Case Studies at the end of each chapter and Focus Boxes throughout the text examine human influences on the environment

(d)

Selected References

The following books are recommended for those seeking a more comprehensive discussion of geographic methodology, philosophy, and history:

Broek, Jan O. M. Geography: Its Scope and Spirit. Columbus, Ohio: Merrill Publishing Co., 1965.

Gaile, Gary, and Cort Wilmott, eds. *Geography in America*. Columbus, Ohio: Merrill Publishing Co., 1989

Holt-Jenson, Arild. Geography: Its History and Concepts. Totowa, N. J.: Barnes & Noble Books, 1980.

James, Preston E., and Geoffrey J. Martin. All Possible Worlds: A History of Geographical Ideas. 2d ed. New York: John Wiley & Sons, Inc., 1981.

Key Terms

Geography Physical geography

Human geography

System

Closed system Open system

Region

Chapter One

The Planetary Setting

Outline

The Place of the Earth in the Universe Planetary Motions

Large-scale Motions

Small-scale Motions

Size and Shape of the Earth

Departures from Perfect Sphericity

Directions

Magnetic North and South

Latitude and Longitude

Time

Local Time

Standard Time

Daylight Saving Time

The Seasons

Cause of the Seasons

Lengths of Day and Night

Focus Questions

- 1. What is geography? How does the geographic approach differ from other approaches to information?
- 2. What is the geographical setting of the earth in space, and what movements is it making through space?
- 3. How is the global system of time zones organized?
- 4. What causes the changing seasons?