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Preface

A differential equation is an integral part of the vast field of mathematics. It can be defined as a mathematical
equation that relates some function of one or more variables with its derivatives. The mathematical theory of
differential equations can be said to have developed together with the sciences where the equations had derived
from and where the results found application or were needed. Differential equations arise whenever a deterministic
relation concerning some constantly changing quantities and their rates of change in space and time is known or
hypothesized. Such relations are extremely familiar and therefore differential equations play a fundamental role in
many disciplines like physics, engineering, biology and economics. The mathematical theory behind the equations
can also be viewed as a uniting principle behind various phenomena. The theory of conduction of heat is one of
the examples of a phenomena governed by a differential equation, that is, the heat equation. One will find that
there are many processes that, while seemingly different, are described by differential equations. Diverse problems,
sometimes stemming from quite distinct scientific fields, may give rise to identical differential equations. Many
fundamental laws of physics and chemistry can be formulated as differential equations. Even in fields such as
biology and economics, differential equations can be used to represent the behavior of complex systems. Thus the
arena of differential equations can be said to be quite a prolific one.

This book is an attempt to compile and collate all available research on the subject of differential equations under
one umbrella. I am grateful to those who put their hard work, effort and expertise into these researches as well
as those who were supportive in this endeavour. I also wish to thank my publisher for giving me this unmatched
opportunity. I am extremely thankful to all the contributing authors who took out their precious time to interact
with me and helped me understand their research perspectives in a better manner for the best output. Lastly, I
wish to thank my family for their constant support.

Editor






Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Preface

On Uniform Exponential Stability and Exact Admissibility

of Discrete Semigroups
Aftab Khan, Gul Rahmat and Akbar Zada

Oscillations of a Class of Forced Second-Order Differential
Equations with Possible Discontinuous Coefficients
Sini%a Mili¢i¢, Mervan Pasi¢ and Darko Zubrini¢

Unboundedness of Solutions of Timoshenko Beam Equations with
Damping and Forcing Terms
Kusuo Kobayashi and Norio Yoshida

Entropy Solutions for Nonlinear Elliptic Anisotropic Homogeneous
Neumann Problem
B. K. Bonzi, S. Ouaro and F. D. Y. Zongo

Nonlocal Problems for Fractional Differential Equations via

Resolvent Operators
Zhenbin Fan and Giséle Mophou

Positive Periodic Solutions of Cooperative Systems with Delays
and Feedback Controls
Tursuneli Niyaz and Ahmadjan Muhammadhaji

Analysis of Mixed Elliptic and Parabolic Boundary Layers
with Corners
Gung-Min Gie, Chang-Yeol Jung and Roger Temam

Existence and Stability for the 3D Linearized Constant-Coefficient
Incompressible Current-Vortex Sheets
Davide Catania

Homogenization in Sobolev Spaces with Nonstandard Growth:
Brief Review of Methods and Applications
Brahim Amaziane and Leonid Pankratov

Analysis of Caputo Impulsive Fractional Order Differential
Equations with Applications
Lakshman Mahto, Syed Abbas and Angelo Favini

VII

16

36

45

54

67

80

96



\

Contents

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Picard Type Iterative Scheme with Initial Iterates in Reverse Order
for a Class of Nonlinear Three Point BVPs
Mandeep Singh and Amit K. Verma

Characterization for Rectifiable and Nonrectifiable Attractivity of
Nonautonomous Systems of Linear Differential Equations
Yuki Naito and Mervan Pasi¢

Erratum to “Positive Solution to a Fractional Boundary
Value Problem”
A. Guezane-Lakoud and R. Khaldi

Fractal Oscillations of Chirp Functions and Applications to
Second-Order Linear Differential Equations
Mervan Pasi¢ and Satoshi Tanaka

An Improvement of the Differential Transformation Method and
Its Application for Boundary Layer Flow of a Nanofluid
Abdelhalim Ebaid, Hassan A. El-Arabawy and Nader Y. Abd Elazem

Dynamics of a Gross-Pitaevskii Equation with
Phenomenological Damping
Renato Colucci, Gerardo R. Chacén and Andrés Vargas

Existence of Positive Periodic Solutions for Periodic Neutral
Lotka-Volterra System with Distributed Delays and Impulses
Zhenguo Luo and Liping Luo

On the Derivation of a Closed-Form Expression for the Solutions of
a Subclass of Generalized Abel Differential Equations

Panayotis E. Nastou, Paul Spirakis, Yannis C. Stamatiou

and Apostolos Tsiakalos

Further Stability Analysis on Neutral Systems with Actuator
Saturation and Time-Delays
Xinghua Liu

Multiscale Splitting Method for the Boltzmann-Poisson Equation:
Application to the Dynamics of Electrons
Jiirgen Geiser

Permissions

List of Contributors

107

113

124

129

140

148

156

169

178

191



On Uniform Exponential Stability and Exact Admissibility of

Discrete Semigroups

Aftab Khan,"? Gul Rahmat,” and Akbar Zada’

! Shaheed Benazir Bhutto University Sheringal, Dir Upper 18000, Pakistan
2 Government College University, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore 54600, Pakistan
’ Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

Correspondence should be addressed to Akbar Zada; zadababo@yahoo.com

Academic Editor: Sotiris Ntouyas

We prove that a discrete semigroup T = {T'(n) : n € Z,} of bounded linear operators acting on a complex Banach space X is
uniformly exponentially stable if and only if, for each x € AP (Z,, X), the sequence n — Y _ T(n - k)x(k) : Z, — X belongs to
APy(Z,, X). Similar results for periodic discrete evolution families are also stated.

1. Introduction

The solutions of the autonomous discrete systems x,,,, = Ax,,
or y,,; = Ay, + h, lead to the idea of discrete semigroups.
There are a lot of spectral criteria which characterize different
types of stability (or other types of asymptotic behavior) of the
solutions of above systems. For further results on asymptotic
behavior of semigroups, we refer to [1].

New difficulties appear in the study of the nonau-
tonomous systems, especially because the part of the solution
generated by the forced term (h,), thatis, Y;_, U(n, k)hy, is
not a convolution in the classical sense. These difficulties may
be passed by using the so-called evolution semigroups.

The evolution semigroups were exhaustively studied in
[2]. Having in mind the well-known results stated in the
continuous case, see for example [2, 3], we can say that this
method is a very efficient one. See also [4, 5] for recent devel-
opments concerning the semigroups of evolution acting on
almost periodic function spaces.

Recently, the discrete version of [6] was obtained in [7].

In this note, we study the asymptotic behavior of the dis-
crete semigroups in terms of exact admissibility of the space
of almost periodic sequences.

In this regard, we develop the theory of discrete evolution
semigroups on a special space of bounded sequences. Results
of this type in the continuous case may be found in [8] and the

references therein. However, by contrast with the continuous
case, we did not find in the existent literature papers written in
the spirit of the present one referring to the discrete evolution
semigroups. These results could be new and useful for people
whose area of research is restricted to difference equations.

2. Definitions and Preliminary Results

Let X be a complex Banach space and %(X) the Banach
algebra of all linear and bounded operators acting on X. The
norms in X and in &(X) will be denoted by || - ||. Let Z,
be the set of all nonnegative integer numbers. A sequence
x : Z, — X issaid to be almost periodic if for any e > 0
there exists an integer I, > 0 such that any discrete interval of
length I. contains an integer 7, such that

[%pr = x| <€, VYnez,. (1)
The integer number 7 is called e-translation number of (x,,).
The set of all almost periodic sequences will be denoted
by AP(Z,,X). For further details about almost periodic
functions, we refer to the books [9, 10]. The set [°(Z,, X)
of all bounded sequences becomes a Banach space when it
is endowed with the “sup” norm denoted by | - ||o,. Clearly,
AP(Z,,X) is a subset of I(Z,, X). Let P((I)(Z+,X) be the
space of all g-periodic (g > 2 is an integer number) sequences



x with x(0) = 0. Denote by &;(Z,, X) the set of all sequences
{x(n)},,5o for which there exists n, € Z, with n, > 0 and

¥, € PAZ,, X) such that

Oa
ke {yx (),

Y0 <n<n,,
ifn>n,.

)

Let APy(Z,,X) := span{dy(Z,, X)}. Here the closeness is
considered in the space [*°(Z,, X).

For a bounded linear operator L, acting on X, we denote
by o(L) the spectrum of L and by p(L) its resolvent set. Recall
that a subset T = {T(n)},1€Z+ of B(X) is called discrete semi-
group if it satisfies the following conditions:

(i) T(0) = I, where I is the identity operator on X.
(ii) T(n + m) = T(n)T(m), foralln,m € Z,.

A discrete semigroup T is said to be uniformly exponentially
stable if there exist N, v > 0 such that

IT (n)| < Ne™™ VneZ,. (3)
The spectral radius of T'(1) denoted by (T(1)) is defined as
r(T (1)) :=sup{|A| : A e a (T (1))}. (4)

It is well known that, see for example [11, page 42],
P(T(1) = lim [ @)™ (5)

As a consequence of (5), a discrete semigroup {T(n)},,cz, is
uniformly exponentially stable if and only if 7(T'(1)) < 1.
Having in mind the continuous case, the “infinitesimal
generator” of the discrete semigroup denoted by G is defined
by G := T'(1) - I. For discrete semigroups, the Taylor formula
of order one is
n—1
Tmx-x=) T(k)Gx, VneZ, nz1, ¥x € X. (6)
k=0
A discrete semigroup T is said to be APy(Z,, X) exact
admissible, if for every x € APy (Z,,X) the sequence
(YroT(n- k)h(k))nEZ+ belongs with AP (Z,, X).
The evolution semigroup S = {S(n),n € Z,} associated
with T on APy(Z,, X) is defined by

T(ryx(n-r), VYn=>r,
0, 0<n<r.

(§(r)x) (n) = { )

3. Results

The following lemma shows that the associated evolution
semigroup {S(n)}nez+ actson AP (Z ., X).

Lemma 1. Let x € APR(Z,,X) and T = {T(j)};cz, be a dis-
crete semigroup of bounded linear operators on X. The sequence
S(r)x, given by

T(r)yx(n—r), Vn=r
0, O<sn<r,

(S(r)x) (n) = { 8)

belongs to AP(Z ., X).

Essential Concepts of Differential Equations

Proof. First we show that S(r)x € & (Z,,X) for any x €
dy(Z,,X). Since x € dy(Z,, X) there exist n, € Z, with
n, > 0, and (y,(n)) € P(Z,, X), such that

0,
sk {yx (n),

Let t1g,y, = 1 + n, and set Y, () = T(r)y,(- = r). Clearly
Vs« 18 g-periodic sequence. It remains to show that

if0<n<n,
ifn>n,.

©)

if 0 <n < ng,,

. (10)
if n > ng,),.

wvmxm={a

Ysrx (1) 5

Ifn < ngyy, =1 +n,, thenn—r <n,and x(n—r) =0, so
S(r)x)(n)=T(r)x(n—-r)=0. (1)

Ifn > ng,y, =r+n,, thenn—r 2n, andx(n-r) = y,(n-r);
hence

SMx)n)=T(r)x(n-r)
=T(r)y,(n—r) (12)

= yS(r)x (n) -

Thus S(r)x € y(Z,,X). Now, from linearity it follows
that S(r)z belongs to span{/,(Z,,X)} whenever z €
span{#(Z,, X)}. Let nowe > 0, x € AP,(Z,, X), and let
z € span{d,(Z,, X)}, such that |[x — z[jj~(z, x) < €. Clearly
S(r)z belongs to span{&/,(Z,, X)}, and

IS(r)z = S(*) xllio(z, x) = sup IT (r) [z (1~ 1) —x (n=7)]|

n2r

<Me"supllz(n-r)—x(n-r)
nzr
< Me"e,
(13)

that is, S(r)x is in AP,(Z,, X). This completes the proof.

Lemma 2. Let T = {T(n)},cz, be a discrete semigroup of
bounded linear operators on X, and let S = {S(n),n € Z.,}
be the evolution semigroup associated with T on APy(Z ., X),
having Gg as generator. Let x,z € APy(Z,, X). The following
two statements are equivalent:

(i) Ggx = -z,
(i) x(n) = X}_, T(n—k)z(k), foralln e Z,.
Proof. (i) = (ii): Using the Taylor formula (6), one has
n-1

n-1
Smx-x=) S(m)Gsx == S(myz. (14)

m=0 m=0
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Then, for everyn € Z, one has

n—1
x(n) = (S x)(m)+ ) (S(m)z) ()
m=0
n—1
=T (n)x(0)+ Y T(m)z(n-m) (15)
m=0

=Y T(-Kz (k).
k=0

(ii) = (i): For each n € Z, one has
(Gsx) (m) = (S(1) = I) x (n)
=T()x(n-1)-x(n)

n-1
=T(1) ) T(n-1-k)z(k)-x(n)

k=0 (16)
n-1 n
=Y Tm-kzk) -) Tn-kzk)
k=0 k=0
=-z(n).
This completes the proof.

See also [12], for a variant of this lemma in other space.
The next result is the main ingredient in the proof of
Theorem 5 that follows.

Theorem 3 (see [7]). Let T = {T'(n) : n € Z.} be a discrete
semigroup on X, and let y be a real number. If

Y T (n-k) f ()| < oo, (17)

k=0

sup
n20

for every f € Pl(zZ,, X), then T(1) is power bounded (i.e.,
SUP ez, A" < 00) and e* € p(T(1)).

As a corollary of this theorem, we state the following.

Corollary 4 (see [7]). Let T = {T(n) : n € Z,} be a discrete
semigroup on X. If the condition (17) holds for every yu € R
and every f in PJ(Z,, X), then the semigroup T is uniformly
exponentially stable.

The result of this paper reads as follows.

Theorem 5. Let T = {T(n)},.cz, be a discrete semigroup on X.
The following four statements are equivalent:
(i) T is uniformly exponentially stable.

(ii) The evolution semigroup S associated with T on
APy(Z,, X) is uniformly exponentially stable.

(iil) The semigroup T is APy(Z ., X) exact admissible.

(iv) $up,ez | Xpo Tl — K)z(K)l| = M, < oo, forall z €
AP,(Z,, X).

Proof. (i) = (ii): Let T be uniformly exponentially stable, and
let N and v be positive constants such that

IT )| < Ne™ Vne Z,. (18)

Then for every f in AP,(Z,, X), one has

IS () flloo = sup IT () f(n=- D <N flo  19)

(ii) = (iii): Since S is uniformly exponentially stable,
1 € p(S(1)), that is, S(1) — I is invertible. Then for each z
in APy(Z,, X), there exists u € APy(Z,, X) such that (S(1) -
Nu= -z

On the other hand, by Lemma 2, u(n) = Y;_, T(k)z(n—k),
for everyn € Z,; hence T is APy(Z,, X) exact admissible.

(iii) = (iv) It is obvious.

(iv) = (i) Obviously, if z € P;’(Z+,X) and g is a real
number, then (ei“"z(n))nez+ belongs to APy(Z,, X). Now, we
can apply Corollary 4 to finish the proof.

The following example is a concrete application of
Theorem 5.

Example 6. Let X be a complex Banach space, and let A be a
bounded linear operator acting on X. Consider the following
two discrete Cauchy problems:

x,+1 = AxJ, j € Z+,
(20)
.xo = b,
Yit1 = ij +fj+1’ jeZ,,
(21

Yo = 0.

The solutions of (20) and (21) are (resp.) given by X; = T(j)b
and yi= i:o T(j - k)x(k). Here T(k) := AF,

From Theorem 5, the following two statements are equiv-
alent.

(1) For each b € X the solution of (20) decays expo-
nentially, or, equivalently, there exist two positive con-
stants K and » such that

IT(j) x| < Ke™ |lx| VxeX. (22)

(2) For each f € APy(Z,, X) the solution of (21) belongs
to AP(Z,, X).

In fact, we can state a more general result concerning g-
periodic discrete evolution families. To establish this result,
we recall that a family % = {U(n,m) :n2m € Z,} ¢ B(X)
is said to be g-periodic discrete evolution family if it satisfies
the following properties.

(i) U(n,n) = I and U(n,m)U(m,r) = U(n,r), for all
nmr € Z, withn =2 m > r € Z,, where I is the
identity operator on X.

(ii)Un+gm+q) =U(m,m), foralln>me Z,.



It is said to be uniformly exponentially stable if there exist
the positive constants K and v such that

U (n,m)| < Ke*™™ VYmzneZ,. (23)

Also, the family % is said to be APy (Z,, X) exact admissible,
if for every z € APy(Z,,X) the sequence (};_,U(n,
k)z(k)),cz, belongs to APy(Z,, X).

The discrete evolution semigroup 7 = {7 (n),n € Z }
associated with the evolution family % on AP(Z,,X) is
defined by

U(r,r—-n)z(r—-n), Vr=n,
0, otherwise.

(T (n)z)(r) = { (24)

As in Lemma 1 it can be proved that it acts on AP,(Z, X).

Theorem 7. Let % = {U(n,m) : n > m € Z,} be a g-peri-
odic evolution family of bounded linear operators on X. The
following statements are equivalent:

(1) % is uniformly exponentially stable.

(2) The evolution semigroup T associated with U is uni-
Sformly exponentially stable.

(3) U is APy(Z,, X) exact admissible.

(4) sup,cz |l Yo U k)h(k)|| < oo, for allh € APy(Z,,
X).

The proofs of (1) = (2) = (3) = (4) are similar to those
in the semigroup case. For the proof of (4) = (1) we use the
following result from [13].

If for every ¢ € R and every z € P§(Z+, X), one has

sup
nez,

Z U (n,k) z (k)“ =M (p,z) < 00, (25)
k=0

then the family % is uniformly exponentially stable.
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We study the oscillation of all solutions of a general class of forced second-order differential equations, where their second derivative
is not necessarily a continuous function and the coefficients of the main equation may be discontinuous. Qur main results are not
included in the previously published known oscillation criteria of interval type. Many examples and consequences are presented

illustrating the main results,

1. Introduction

Let t, > 0 and let AC,,.([t;, 00), R) denote the set of all real
functions absolutely continuous on every bounded interval
[a,b] c [ty 00). We study the oscillatory behaviour of all
solutions x = x(t) of the following class of forced second-
order differential equations:

(r @ (x(t), % 1)) +q®) f(x 1) = e(®),
a.e. in [ty 00), 1)
x,1® (x,x") € AC,y ([ty, ), R),

where the functions ® : R? - R, ® = ®(u,v), f
R — R,and f = f(u) satisfy some general conditions
given in Section 2. A continuous function x = x(t) is said
to be oscillatory if there is a sequence t,, € [t,, 00), such that
x(t,) = Oforalln e Nandt, — coasn — oo. A differential
equation is oscillatory if all its solutions are oscillatory.

The forcing term e(t) is a sign-changing function (possi-
bly discontinuous). This can be formulated by the following
hypothesis: for every T > t, there exist two intervals (a,, b,)
and (a,,5,), T < g, < b, < a, < by, such that

e(t)>0, te(anb),
)

e(t)<0, te(ayb).

The coefficient g(t) may be a discontinuous function on
[tg»00) and the case x ¢ Cz((to,oo),R) occurs in our
main results and examples too. Two important classes of
functions ®(u, v) are included in the differential operator

(r()D(x, x)) as

¢ () v
Vit

The first one is the classic second-order differential operator
which is linear in x" and the second one is the so-called
one-dimensional mean curvature differential operator; see
Examples 1 and 2,

Depending on g(t), we propose the following four simple
models for (1):

O(w,v)=¢dpw)v, O(uv)= (u,v) € R (3)

(i) g(t) is strictly positive and continuous on [t,, 00) as

x" +4am’f (x) = h(sin (mt)), ae. in [ty 00),

x,x' € AC ([tg»0),R), x ¢ C*((ty,0),R); .
(ii) g(t) is nonnegative and continuous on [t,, co0) as
x" + m*n*[cos (mt)]" f (x) = h(sin (mt)),
ae. in [ty 00), (5)

X5 x’ € ACIOC ([to, m) ) I:R) 5
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[sin(t)| sin(t) is a solution of (4).

= 2[sin(t)| cos(t) and hence x”'(t) is not a continuous

(iii) g(t) is nonnegative and discontinuous on [t;, 00) as
x" + 4m’[sign (cos (mt))]” f (x) = h(sin (mt)),
ae. in [t;,00), (6)
x,x' € ACy. ([tp»0),R);
(iv) g(¢) is sign changing and discontinuous on [t,, c0) as

h (sin (mt)),

00), )

£ +am’ sign (cos (mt)) f (x) =
a.e. in [t,,

x,x' € AC,,. ([ty0),R),

where m € N and h(s) is an arbitrary function such that
h(s) s > 0 for all s # 0, for instance, h(s) = s or h(s) = sign(s).
According to Corollaries 7 and 10, we will show that (4)-
(7) are oscillatory provided the function f = f(u) satisfies
fw)/u =2 K = 1 for all u#0; see Examples 8-13. It is
interesting that in particular for f(u) = wu and h(s)
2m? sign(s), (4) allows an explicit oscillatory solution x(t)
|sin(mt)| sin(mt) as shown in Figures 1 and 2.

Moreover, as a consequence of Corollary 7, one can
show that all solutions of (4) are oscillatory; for details see
Example 8. The main goal of this paper is to give some
sufficient conditions on functions ®(u,v), f(u) and the
coefficients r(t), g(t), and e(t) such that (1) is oscillatory; see
Theorems 3 and 4. It will also cover the model equations (4)-
(7) as well as some other examples presented in Section 2.

To the best of our knowledge, it seems that there are only
few papers which study the oscillation of the second-order
differential equations with nonsmooth (local integrable)
coefficients; see [1-3]. More precisely, in [1] the author studied
the interval oscillation criteria for the following second-order
half-linear differential equation:

(ro )< O % ®) +q@0 xOP x0 =0,
ae. in (0,00), (8)

-1
X, rlx"r7 x € AC, ((0,00),R),
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where ¢ > 1 and 1/r, g € L;,.((0,00),R) such that
J(;)o rY9(t)dr = o0. See also [2] but with the solution
space C'((0, 00), R) instead of AC,,.((0, 00), R), that is, x and
rlx'17'x" € C'((0,00), R).
In [3], the authors consider the following second-order
differential equation:
(ri)x' ®) +Q(Lx @), 1)) =0, tzt, ©)
where r(t) > 0 a.e. in [t5,00), 1/r € L, ([ty,00), R), and
Q(t, y, z) is locally integrable function in ¢ and continuous in

(y,2). Equation (9) allows the forcing term e(t) in the next
sense as follows:

yQ(t,y,2)2q®) yf (y)—e(t) y
Y (t, y,2) € [tg,00) x R?,

where e = e(t) satisfies (2), but the functions g = g(t) and
f = f(y) are smooth enough in their variables, that is, q €
C([ty,00),R) and f € C'(R, R).

On certain oscillation criteria for various classes of
forced second-order differential equations with continuous
coefficients, we refer the reader to [4-13]. Our method
modifies a recently used one in [14, 15] and it contains
the classic Riccati transformation of the main equation, a
blow-up argument and pointwise comparison principle. The
comparison principle applies to all sub- and supersolutions of
a class of the generalized Riccati differential equations with
nonlinear terms that are supposed to be locally integrable
in the first variable and locally Lipschitz continuous in the
second variable.

(10)

2. Hypotheses, Results, and Consequences

First of all, the function ®(u, v) which appears in the second-
order differential operator of (1) satisfies
" 2v® (u,v) = g (IO (,v)]) VYu,veR, (1)
wherey > 2and g : R, — R, isalocally Lipschitz function
g : R, — R, satisfying
glcs)=c’gy(s) Ve>0, s>0,
(12)
go () + My >s* for some My >0 and all s € R,.
In most cases, g(s) = gy(s)g,(s), s > 0, where g,(s) = s?,
y = 2, and g, (s) is an arbitrary function satisfying g,(s) > 1.
Thus, for such g(s) with g,(s) = 1, condition (11) became:
ul"2v® (u,v) 2 |® (w,v)]"  Yu,veR. (13)
It is not difficult to check that if g, € C'(R,) or g,(s) is a
convex function, then it is locally Lipschitz on R, too; see for
instance [16, Theorem 1.3.3].
Two essential classes of the second-order differential
operators (r(t)®(x, X)) satisfy condition (13), as is shown in
the next examples.
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Example 1. We consider the second-order differential opera-
tor which is linear in x as follows:

(ryo(x ") = a(p)x), (14)

where @ > 0and 0 < ¢(u) < 1 for all u € R. Obviously, the
function ®(u, v) = ¢(u)v satisfies condition (13) in particular
for y = 2. Two usual choices for ¢(u) are ¢(u) = [sin u| and

d(u) = ul/(1 + [ul).

Example 2. We consider a quasilinear differential operator
(the so-called one-dimensional prescribed mean curvature
operator) as follows:

(r(t) 0] (x,x')) (¢(x) \/%c—z) , (15)

where @ > 0and 0 < ¢"(u) < [u]'* forallu € R, It is not
difficult to check that condition (13) is satisfied in particular
for ®(u,v) = p(u)v/(1 + vz)”2 and for any y > 1. For ¢(u),
we can take the same choice as in the previous example.

Next, we suppose the existence of a constant K such that

f( >K>0 Vu#0. (16)

In order to simplify our consideration here, in many examples
we often use f(u) =

Condition (2) means that there exists a sequence of pairs
of intervals J;; = [ay;,by;] and J; = [ay;. b5, j
contained in ( to, 00), such tﬁat the sequences (g, 1),>], (bl ISt

(a;)>1> and (by;) j», are increasing, a,; < by; < a); < by; for
each j, and
e(t)>0 on ]lj, e(t)<0 on ]2}-
for each j e N, a7)

lim a,; = oco.
j—oo

On the intervals J; § and J, i» the coefficient r(t) satisfies

r(t)>0 on J,rYel (],j)
(18)
Vie{l,2}, jeN.
Let there be a real function C = C(t), C €
loc( (ty, 00), R), and let there exist a sequence of positive real
numbers (A;) ¢y such that

C(t)ZO on I'”,C,'j

:=J C(r)dr >0
]

i

Vi€ {1,2},

K
n llj(‘I(t)}

jeN,
(19)

1 1 . 1-y
"ch (t) < - min {()\jr(t)) 5

where y, M,;, and K are constants defined in (11), (12), and
(16), respectively.

The proof of the following main result will be presented
in Section 4.

Theorem 3. Let the functions ®(u,v), f(u), e(t), and r(t)
satisfy (11), (12), (16), (17), and (18), respectively. Let q(t) > 0
and q(t) # 0 on each interval Jijs i € {1,2}, j e N.If (19) is
fulfilled, then (1) is oscillatory.

Condition (19) can be replaced by an equivalent one,
which has a more practical value and takes a simpler form
since we do not need a sequence of auxiliary parameters
(Aj)_,-eN: let there be a real function C = C(t), C ¢

L}oc((to, 00), R) such that

C)20 on Jyg= | CEdr>0 Viell),

L

jEN,

C(t) 1/(y-1) L i y/(y-1)
swp [ | sop [ 1007 < ()

Vie{l,2}, jeN,
(20)

where y, M, and K are constants defined in (11), (12), and
(16), respectively. Since we will show that (19) and (20)
are equivalent, see page 8, the next oscillation criterion
immediately follows from Theorem 3.

Theorem 4. Let the functions ®(u,v), f(u), e(t), and r(t)
satisfy (11), (12), (16), (17), and (18), respectively. Let g(t) > 0
and gq(t) # 0 on each interval Jyj i€ {1,2}, j € N If (20) is
fulfilled, then (1) is oscillatory.

Remark 5. Assuming that L := hm} whj < 00, we
can ensure the oscillation in the point L. Note that L =
lim;_, ,@,; since a;; < a; < ay;,,. Thus, we can generate
a one-sided (right) limit.

Now, we consider some consequences of Theorem 4,
which depend on the qualitative properties of the coefficient
q(t).

Substituting C(t) = 1 in (20), Theorem 4 implies the
following result involving lower bounds on the lengths of
intervals |]']| = bU - a,-j.

Corollary 6 (q(t) is positive). Let the functions ®(u, v), f(u),
e(t), and r(t) satisfy (11), (12), (16), (17), and (18), respectively.
Let infy¢; q(t) > 0 for eachi € {1,2}, j € N. If

(M, +1) sup;cy, 7 ()
il 2

y-Uly
: Vie{l,2}, jeN,
Kmf,dﬁq (t) ) { /

(21

then (1) is oscillatory.



Corollary 7 (g(t) is bounded from below by a positive
constant). Let the functions ®(u, v), f(u), e(t), andr(t) satisfy
(11), (12), (16), (17), and (18), respectively. Let there be two
constants r,, q, satisfying

O0<r(t)sry, q()=2qy>0 Vie{l, 2}, jeN, (22)
If
(y-Dfy
M,+1
IL_]_I Zn((_M) vie{l,2}, jeN, (23)
Kqq

then (1) is oscillatory, wherey, M, and K are constants defined
in (11), (12), and (16), respectively.

Example 8 (oscillation of (4)). We know that x(t) =
|sin(mt)| sin(mt) is an oscillatory solution of (4). However,
according to Corollary 7, we can show that all solutions of (4)
are oscillatory. Indeed, since ®(u, v) = v, the conditions (11)
and (12) are satisfied especially for y = 2, g(s) = gy(s) = s?
and M, = 0. Next, f(u) = u implies that condition (16) is
satisfied especially for K = 1. Since r(t) = 1 and gq(t) = am?,
it is clear that conditions (18) and (22) are also satisfied in
particular for r, = 1 and g, = 4m”. Moreover, since e(t) =
h(sin(mt)) and h(s)s > 0, s # 0, we have that (17) is fulfilled for
a; = 2jm/m, blj = (2j+ )n/m = a,; and sz =(2j+2)n/m.
Moreover,

Vil =bi—a=Z >0, ie{1,2). (24)
# m

Hence, we conclude that the required condition (23) is
fulfilled, that is,

s T
( (My + 1)y )‘”‘”’Y . ( (My + )y )‘Y‘”“’
=0 ——— 20 —— A
4o Kaqy

(25)

Thus, all conditions of Corollary 7 are satisfied and hence (4)
is oscillatory.

Example 9. We consider the following class of equations:

s (t)
S(t)

"

x =2

x=2sign(S() S (), ae. in [ty 00),

x ¢ C*((tp,0),R),
(26)

x,x' € ACp, ([ty,00),R),

where § = S(1), S € C*(R) isan oscillatory function such that
the zeros t,, of the function sign(S(t))S'z(t) satisfy t, — oo,
thereisa 7, € R such thatt,, , —t, > 1, > Oforalln € N, and
S(t)#0 on (t,,t,,,)- This equation allows an explicitly given
oscillatory solution x(t) = |S(#)|S(#). Moreover, if there is a
constant s; > 0 such that

s t)
S(t)

-2 >s5y, te€(tpnty), To2—, (27)

=1k
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then by Corollary 7 we conclude that (26) is oscillatory.
Indeed, conditions (11), (12), and (16) are satisfied by the same
reasons as in Example 8. Condition (18) is satisfied because
of r(t) = 1. Also, from (27) it follows that (22) and (23) are
fulfilled in particular fory = 2, My = 0,1, = 1, g, = $;, and
K > 1, that s,

T
l],_,l = |tj+l == t,l 2 Ty 2 —

VSo
(y-1)/ (y-1)/
:n((Mo*‘l)"o)) 7>”<(M0+1)r0)" :
o N Kgq,
(28)

Hence Corollary 7 proves this result.

As the second consequence of Theorem 3 is unlike the first
one, we consider the case when the coefficient q(t) is not a
strictly positive function. Here by {g = 0} we denote the set
ofall t € R such that g(t) = 0.

Corollary 10 (g(t) is nonnegative, but not = 0). Let the
functions ®(u,v), f(u), e(t), and r(t) satisfy (11), (12), (16),
(17), and (18), respectively. Let q(t) = O on each interval J;,
i€{1,2}, j €N, such that

qj = J']“q(‘r)dr >0, ie€{l,2}, jeN. (29)

If
LI
q(t)
tel;\{g=0}, ie{1,2}, jeN,

ﬂy( (Mg +1)r(t) )y_l

K (30)

then (1) is oscillatory.

Proof. It suffices to show that (30) is equivalent to the
existence of a real number A such that

A.ZML

1 1 1-y
J K gy G ;(Ajr(t)) '

4ij (31)
telyie{l,2}, jeN.

The claim will then follow from Theorem 3. Inequality (31) is
foranyt € J;; \ {q = 0} equivalent to

., 1/(y-1)
ML</\~§( 4ij ) 1 (32)

K qij h nq (t) W’
that is, to
. ; 1/(y-1)
Tt(MO + 1) i < ( q'} > L (33)
K qij niq (t) r(t)

This inequality is easily seen to be equivalent to (30) for any
t € ]ij \ {g = 0}. Note that if t € {g = 0}, then the second
inequality in (31) is trivially satisfied.



