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Preface

Topological measure means a measure on a o-algebra of subsets of a
topological Hausdorff space which contains the open sets. Hence a topo-
logical measure is defined at every Borel set of the underlying Hausdorff
space. This book provides a detailed exposition of the theory of topological
measures. The measure theoretical prerequisites are furnished in the first
chapter.

Topological measure theory is a particularly intriguing part of general
measure theory. Its special attraction is due to the close interplay of measure
and topology. The connection between these two disciplines is provided
by the regularity properties which the topological measures assume with
respect to the topology of the underlying Hausdorff space. Recall as classic
examples of such measures the Lebesgue measure on the Euclidean spaces
R™ and more generally the Haar measures on locally compact topological
groups. Many of the usual regularity properties are treated throughout the
book. We add two new regularity properties. The notion of local tightness
is relevant to the study of pre-Radon spaces leading in the end to a certain
class of Radon spaces. The mc property proves very useful for the study of
weighted Radon measures.

Radon measure denotes a topological measure which is locally finite and
inner and outer regular. Radon measures correspond one-to-one to locally
finite tight measures which we treat as well throughout the book.

Roughly speaking Chapter 2 is concerned with the interdependencies
among the various regularity properties as well as the implications of these
properties on other properties of topological measures. Particularly inter-
esting are the implications of topological properties of the underlying space
on the regularity of the topological measures. A main object of topological
measure theory, with which we are concerned, is to determine those topo-
logical spaces, called Radon spaces, on which every finite Borel measure is
a Radon measure. In this context we introduce locally tight spaces. These
are pre-Radon spaces, in which the locally K-analytic spaces are prominent.
Another topic which we study under various premises is the Borel regularity
of the essential outer measure of a topological measure. The usual case is
that the essential outer measure of a Radon measure is Borel regular. We
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have some positive results, e.g. when the underlying space is weakly ©-
refinable. However, in general, a non-tight Radon measure does not need
to share this property, as an example on a occ space and on a locally com-
pact space shows. Assuming CH there is also a negative example for a tight
Radon measure on a locally compact space. It turns out that within ZFC
it is not possible to decide whether there exists a tight Radon measure on a
regular space with non-Borel regular essential outer measure.

The considerations on topological measures in Chapter 2, which contain
also several results on integration theory, are preceded by a thorough discus-
sion in Chapter 1 of the outer measure and the essential outer measure and
their respective integrals of an abstract measure. This exposition includes
also measures multiplied by a density function and is interesting by itself.
The main purpose we pursue by this introductory chapter is to determine
clearly those parts of the results on topological measures which are not of
purely measure theoretical origin.

Weighted Radon measures are obtained by multiplying a Radon measure
by a locally integrable non-negative extended real-valued function. This is
an as elementary as useful construction of measures, which arises in applica-
tions as well as in theory, but which does not preserve regularity properties.
In general, neither inner nor outer regularity of a Radon measure is main-
tained. Regularity of a weighted Radon measure obviously depends on the
weight function, the Radon measure itself, and the topology of the under-
lying Hausdorff space. It seems that literature does not deal much with
this attractive topic. We study the involved dependences to some extent
in Chapter 3. Things become remarkably clear if both measures, i.e., the
Radon measure and the corresponding weighted measure, have the mc prop-
erty. In this case the regularity of the weighted Radon measure essentially
depends only on the zero set of the weight function in relation to the Radon
measure. This favorable situation occurs automatically if the underlying
Hausdorff space is Lc, which means that the closure of every o-compact
subset is a Lindelof set. If the closure is even o-compact, then the space is
called occ.

The content of Chapter 4 is purely topological. It is devoted to the
study of occ and Lc spaces. The question is treated how the occ and Lc
properties are related to other topological properties. For instance, it follows
that paracompact spaces or generalized ordered spaces are Lc, and P-spaces
are occ. On the other hand several types of locally compact spaces are
constructed with many additional topological properties, which are not occ.
Also some general results on mappings, coverings, and products are obtained
concerning the occ and Lc properties.

We found it particularly important to provide examples and counterex-
amples commenting on the results. The last chapter is a collection of
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(counter)examples which arises from the discussion of the results on the reg-

ularity of topological measures, in particular of weighted Radon measures,

obtained in previous chapters. Typically the sufficiency and necessity of the

premises as well as the possibility to strengthen the results are examined.

Several interesting examples are based on the infinite topological product

of probability measures on compact spaces, which is treated in the last sec-

tion of the second chapter. The prior section of that chapter is concerned

with two special types of topological measure spaces from which many other

examples are taken. Similarly, the last section of Chapter 4 is devoted to

a number of (counter)examples illustrating and completing the previous re-

sults on the occ and Lc properties. But also throughout the remaining parts

of the book we included many elucidating examples.

The level of the presentation of the material is advanced undergraduate.
It presupposes some familiarity with elementary measure and integration
theory and assumes little beyond the basic definitions and results from set
theoretic topology. Only at some points in the chapters 2, 4, and 5 more set-
theoretic skill is required. As to the references, we cite the literature which
was near at hand and made no effort to trace the results to the origins.

We are indebted to W. Adamski, W.W. Comfort, D.H. Fremlin, P.
Nyikos, V. Uspenskij, and J.V. Yascenko for providing useful information.
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Chapter 1

Abstract measures
and densities

We collect and develop some facts from the theory of abstract measures and
integration, much of which will be used later. Tacitly we refer to elementary
measure and integration theory, see e.g. [Bau; Kap. I, II], [Els; Kap. I-IV],
or [HewStr; §10-12].

Throughout this chapter, let (X,B,u) be a measure space, i.e., X
a set, B a o—algebra on X, and p a measure on B. We recall that B is
a non-void set of subsets of X being closed under complementation and
countable unions, and p is a non-negative extended real-valued countably
additive (i.e. o-additive) function on B being zero at the empty set (). The
sets A € B with u(A) = 0 are called p—null sets. A function f on X is
said to be p—integrable if it is B-measurable with [|f|du < oco. Recall
also that an outer measure w on a set X is a non-negative extended real-
valued function on the power set P(X) of X which is monotone countably
subadditive (i.e. o-subadditive) and vanishes at the empty set. The sets
A C X with w(A) = 0 are called w—null sets, and a set A C X is called
w—o—finite if A C |J;2; An with w(Ay) < oco.

Generally, we use standard notation. N denotes the set of positive in-
tegers. For extended real-valued functions f and f,, n € N, the notation
fn 1 f means f1 < fo < ...and f, — f pointwisely. Also f > 0 is under-
stood pointwisely.

1.1 Outer measure and upper integral

The outer measure p* on X associated with yu is given by
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(1) u*(A) :=inf{u(B): B> A, Be B}, AcCX.

As suggested the set function p* is an outer measure, see (10). Clearly, u*
extends g and the infimum in (1) is attained. — Omne should note that,
in general, p*(B \ A) > 0 holds for every B € B with B D A, even if
w is finite. Actually, u*(B\ A) = 0 for some such B implies A € B, cf.
(25). — If some B in (1) is o-finite, then there is a C O A, C € B such
that u(C \ B) = 0 for all B in (1). Indeed, let A be covered by countably
many FE, € B of finite measure. Choose C,, € B with C;, D AN E, and

p(Cr) = p*(ANE,). This obviously implies u(Cp\ B) = 0. Set C := |J,, Cn.

More generally one defines the upper integral [ * f du for any function
f:X —[0,00], shortly f > 0, by

(2) J*fdp:=inf{[sdu: s > f, s step function},

where a step function s on X takes only countably many values a,, € [0, 00|
such that s~'({a}) € B, and where its integral (in the ordinary sense) is
[sdu =3, anpu(s7 ({an})). Here, as throughout measure theory, 0 - 0o =
00 -0 =0 holds. For A C X let 14 denote the indicator function of A.
Then, obviously,

(3) WH(A) = [*Ladp.

- (4) Proposition. The upper integral extends the integral, i.e.,

[*fdu= [fdu for all B-measurable f > 0.

Proof. Note first that [fdu < [*f dp holds by the definition of [*. There-
fore one may assume [fdu < oo. Then {f > 0} is o—finite. Hence {f > 0}
is the union of countably many, mutually disjoint A,, € B, each of finite mea-
sure. It suffices to show (4) for finite measure, since then, if ¢ > 0, there are
step functions s, > 14, f satisfying [14,sndp < [14, f du + 27 "¢, whence
Jsdp < [ fdp+ € for the step function s := 3 14,5, > f.

In addition, an analogous argument reduces (4) to the case that f is
bounded, since f =3 1t 1<5<n}f + 1{f=c0} f-

Now let u be finite and let f < alx for some a € [0, 00[. For € > 0 there
is an elementary function u < alx — f with [(alx — f)dp < [udp +e.
Then s := alx — u, which of course is a step function, satisfies f < s and
[sdu < [fdp+ e. This implies the assertion. O
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If f > 0 is B-measureable, then the step functions

oo
(5) Sk = 2—k Z 1{f>'n,2_k} fOT‘ keN

n=1

satisfy f < sx + 27% and s; 1 f, and the monotone convergence theorem
yields [fdp = limg [sgdp. Hence, by (4), f is sandwiched between upper
and lower step functions whose integrals tend to [ f dp.

(6) Proposition. The upper integral is monotone, countably subadditive,
and satisfies the Fatou property , i.e.,

(7) 0<f<g = 0Z<["fdu< ["gdp,
8  fa20neN = [(X.fu)du <3, [ frdp,

9) fn20,f20,fa1f = [“fadu? [“fdp.

Proof. Monotonicity is obvious. — To show (8), let s, > f,, be a step func-
tion. Then s := ) s, is a step function satisfying s > f := 3", f,. Because
of the countable additivity of the integral, }°,, [s, du = [sdu > [* f dp, and
therefore, [*fdu < inf{}", [sndu : s > fo,n € N} = 3 inf{[s,dp :
Sn > fo} =3, J " fndu. — To show the Fatou property (9), let s, > f, be
step functions such that [s, du < [*f,du+2L. Then g, = inf{s, : m > n}
is B-measurable and satisfies s,, > g, > fn, since 8, > fm > fn for all
m > n, and therefore [*fndp < [gndp < [sndp < [* fndp+2L by (4). The
first and the last term tend to a := sup,, [~ fn du, and [g, du tends to [gdu
where g := sup,, g, = liminf,, s,, because of the Fatou property of integrals,
i.e. B. Levi’s theorem [HewStr ;(12.22)]. Therefore a = [gdu > [*fdu > a
by (4) since g > f > f. 0

(10) Corollary. The set function pu* is an outer measure having the Fatou
property, i.e.,

An, ACX, AnTA = u*(A4,) T p*(A).
Proof. This follows from (3), (6), and since u*() = 0. O

Note that not all outer measures have the Fatou property. As a simple

example consider the outer measure w on X = N given by w(() := 0,

w(A) := 1 if A is not empty and finite, and w(A) := oo if A is infinite.
From (2), and using (9) if a = oo, it follows easily
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(11)  [afdu=caf" fdu for a € [0,00] and f > 0.

Further we mention (cf. (39))

12) Lemma. If A C X with u*(A) =0, then [*fdu = ["1x\afdu holds
\
for f >0 and, in particular, p*(A") = p*(A’'\ A) for A’ C X.

Proof. This follows from (6) and [*fladp < [foo-1adu =00 u*(A) =0
by (11) and (3). O

Also it is clear from the definition of the upper integral that
(13) Lemma. f >0, [“fdu<oo= {f >0} is u* -o-finite.
Now, o-finiteness of {f > 0} is assumed.

(14) Proposition. The following regular behavior of the upper integral

S fdu=sup{[*1gfdu : E € B, u(E) < oo}
holds for all f > 0 with {f > 0} u*-o—finite.

Proof. By assumption there are E,, € B with u(E,) < oo and E, 1 ,, Em D
{f > 0}. Then 1g, f 1 f. Hence the result follows from (9) and (7). d

On account of (7) and (4) one has

(15) Corollary. [*fdu = inf{[gdu : g > f, g B-measurable} holds for
every f > 0. Plainly, the infimum is attained.

The upper integral could be defined by (15).

Definition. The completion of B with respect to u is the o—algebra
(16) B :={C c X : w(B\A) =0 for some A, BE B, ACC C B}.

Plainly, B C B. A larger o—algebra is the Lebesgue extension of
B with respect to u defined by

(17) B :={AC X : ANE € B for every E € B with u(E) < c}.
By (28) below, By, is equal to the Carathéodory extension

(18) B* :={AC X : p*(S) = p*(SNA)+u*(S\A) for any S C X}
of B with respect to u.
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The p-completion B of B can be described equivalently as
(19) B ={Cc X: there is B € B with u*(CAB) = 0}.

Indeed, for the less trivial inclusion D note that B\ D C C C BU D where
D € B is any p-null set containing CAB.

For any measure space (X, B, i) the relation B ~ C on B defined by
uw(BAC) = 0 is an equivalence relation such that p is constant on each
equivalence class. The set of equivalence classes [B], B € B, together with
the [0, o00]-valued function [B] — u(B), is called the measure algebra
of (X,B,u). It is partially ordered by [B] < [C] if u(B\ C) = 0. By
definition, the measure algebra is Dedekind complete, if every subset of
it has a supremum (see [Hal; §40], [Fre’74; 13B, 41G]), and the measure
space (X, B, u) is called Maharam or localizable if the measure algebra
is Dedekind complete and p is semi-finite (cf. before (47)). It is easy to
show that any finite, and hence any o-finite, measure space is Maharam (cf.
the proof of (2.138)). The important fact we want to mention is that the
Strong Radon-Nikodym Theorem holds if and only if the measure space is
Maharam [Fre’74 ; 64B].

Recall that for any outer measure w the set
(20) A={ACX : w(S)=w(SNA)+w(S\A) for any S C X}

is the o—algebra of the w—measurable sets and that by [HewStr; (10.9)]
(21) w([JAnn8)) =3, w(4.NS)

holds for disjoint A, € A, n € N, and S C X. In particular, w|A is a
measure. For § C X call Ag := {ANS: A € A} the restriction of A to S.
It is easy to see that Ag is a o-algebra on S contained in the o-algebra § of
w|P(S)-measurable sets. Hence w|Ag is a measure on S, extended by w|8.

A function f : X — [—o00,00] is called w—integrable if it is w|A-
integrable.

In the case of the outer measure yp*, the o-algebra B lies in B*, and
thus p*|B* extends p as a measure. See [Bau; 5.1, 5.3] or [Els; I1.4.5]. The
measure p*|B* is called the Carathéodory extension of u. Obviously
(u*|B*)* < p*. As the infimum is attained in (1) for u*|B*, also the reverse
inequality follows immediately. Therefore

(22) (W*|B*)" = p*

holds. The measure ©*|B* is complete, i.e., all subsets of null sets are mea-
surable. Thus B C B*. The measure i := p*|B is called the completion
of p. One easily verifies
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(23) ()" = p.

Recall that the outer measure p* has the Fatou property by (10). As men-
tioned after (10) not all outer measures have that property. However, the
Fatou property does not single out those outer measures which are derived
from a measure according to (1). More precisely, there is an outer mea-
sure w having the Fatou property such that (w|A)* # w in contrast to (22),
where A denotes the o—algebra of w—measurable sets. As an example, let
X consist of two points and let w(@) := 0, w(X) := 3, and w(A) := 2 for
0 # A # X, cf. [Zaa; Chap.2, 7.2 Exercise, p.44, 488]. — Generally an
outer measure w is called regular, if (w|A)* = w with A as above. So p*
is regular by (22). Clearly, an outer measure w is regular if and only if for
every A C X there is a B € A satisfying B D A and w(A) = w(B).

(24) Proposition. Regular outer measures have the Fatou property.

Proof. Let (A,) be an increasing sequence of subsets of X. By the regularity
of the outer measure w there are B,, € A with B, D A, and w(4,) = w(B,).
Then w(|J,, An) < w(U,, Nm>n Bm) = limp, w(N,,5, Bm) < liminf, w(B,) =
lim inf,, w(A,) = lim, w(A,), where the two inequalities and the last equality
hold because of the monotonicity of w and the first equality holds because
of the continuity from below of the measure w|A. The reverse inequality
lim, w(Ay,) < w(lJ,, An) is obvious. O

(25) Proposition. For all A C X one has

p*(A)=0 < A is a subset of some p—null set = AeB.

Proof. This follows from (1) and (16). a

(26) Proposition. For all f > 0 one has

[*fdu=0 < p({f>0})=0 = f is B-measurable.

Proof. The implication < is clear by (12). Now let [*fdu = 0. Then
w{f >a}) < f*éf dp = 0 for all o > 0 by (3), (7), and (11). Therefore
w*({f > 0}) = 0 by (10). This implies {f > a} € B by (25) for all a > 0.
Hence f is B-measurable. O
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(27) Proposition. The Carathéodory extension B* satisfies

B*={AC X : u(B) =p*(BNA)+ pu*(B\ A) for all B € B}.

Proof. B* is contained in the right hand side of (27), which we call B. Now
let A€ Band S C X. Because of the subadditivity of p* it suffices to
show that p*(S) > p*(SN A) + p*(S\ A). By (1) there is B € B with
B > S and u(B) = p*(S). Then p*(S) = u(B) = p*(BNA) + p*(B\ A) >
p*(S N A)+ pu*(S\ A) since A € B and since p* is monotone. d

This shows that B* is the largest of all oc—algebras € on X such that € D B
and p*|C is a measure. We now show

(28) Proposition. The algebras B* and By, coincide.

Proof. As to B* C By, let A € B* and consider E € B with u(E) < oo.
There exists F' € B with FF D ANE and u(F) = u*(ANE). As ANE € B*
one gets u(F) = p*(ANE)+p*(F\(ANE)). Therefore u*(F\(ANE)) =0
and AN E € B follows by (25).

To show the reverse inclusion using (27), let A € By and B € B with
u(B) < oo. Since A € By one has BNA € B by (17). So there is F € B with
BDO>FD>BNA, p*(F\ (BN A))=0. Then the outer measure pu* satisfies
p(BNA)+p*(B\ A) < u(F) +p(B\ F) +p*(F\ (BN A))=puB). O

Consequences of (28), the fact that B c B*, and (25) are

(29) Proposition. For all A C X one has

AeB* & ANE € B* for all E € B with u(F) < co.

(30) Proposition. For all A C X one has

A € B* with p*(A) < o0
& p*(B\ A) =0 for some B € B with B> A and u(B) < oo
& wp*(A\ B) =0 for some B € B with BC A and u(B) < oo
= Ae8B.

A generalisation of a part of (30) is



8 Topological Measures and Weighted Radon Measures

(31) Lemma. Let f > 0 be B*-measurable with {f > 0} u*-o—finite. Then
f is B—measurable.

Proof. Use B*-step functions s, T f. By (30) these are B-measurable. [

(32) Definition. A set A C X is called a local y—null set, if u*(ANE) =0
for all E € B with u(E) < oo.

Obviously, the union of countably many local py—null sets is a local p—null
set. Also every p—null set, and more generally every p*—null set is a local
p—null set, and

(33) Lemma. A C X is a local null set if and only if p*(S) € {0,00} for
all S C A.

Furthermore by (29) and (25) one has
(34) Proposition. Every local null set is pu*-measurable.

If p is o—finite then B* = B and every local p—null set is a j-null set.
This follows from (30) and (32). But in general B* # B, see (5.1) (¢), and
there are local null sets in B which are not null sets, see (5.1) (). For
B # B* consider also the following example where B* is even larger than
the o—algebra generated by B and the ideal of the local null sets.

(35) Example. Let X be an uncountable set and u the counting measure
on B:={AC X :Aor X\ Ais countable}. Then B = B holds, 0 is the
only local null set, B* = P(X), and p* is the counting measure on P(X). O

Proposition. The integral with respect to u*|B* satisfies

(36) S fdp*|B* = [*fdu  forall f >0 (cf.(22)),
(37) [fdu*|B*= ["fdu for all B*~measurable f >0 (cf.(4)).

Proof. Since every set A € B* is contained in a set B € B with u*(A4) =
u(B) the step functions s in (2) may be replaced by B*—step functions and
[sdu by [sdu*|B*. This proves (36) and shows that (37) holds for B*-step
functions f. The general case now follows by representing f as the limit of
an increasing sequence of B*—step functions and using the Fatou property
of the integral and the upper integral. O
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Now we are able to show the following restricted additivity of [~.

(38) Proposition. For g > 0 B*-measurable and f > 0 one has
J*fdu= ["inf{f,g}du+ ["sup{0, f — g} dp,
agreeing that oo — 0o :=0, 0o — @ := 00, a — 00 := —00 for a € R.
Proof. Let i := inf{f, g}, j := sup{0, f — g} and consider a B*—~measurable h
with h > f. Then ¢ := inf{h, g} and j' := sup{0, h — g} are B*~measurable
and satisfy ¢/ > i, j/ > j. By (7) and (37) one has [Tidu + [“jdu <
f*i/ le‘f*J’ d/‘l’ = le d#*|B*+f]/ dﬂ*lﬁ* — f(2’+],) d#*lﬂ* — fhd,u*|B*

Hence (15) and (36) yield [“idu + [jdu < [*fdu*|B* = [*fdu. The
reverse relation follows from subadditivity (8). O

Applying (38) with g := oo - 14 generalizes (12) because of (26).
(39) Corollary. [*fdu= ["1afdu+ [*1x\afdu for f >0, A€ B*.

In what follows the question is treated whether the upper integral can be
approximated by integrals from below.

(40) Proposition. For f >0 let a:= ["fdu and set

b := sup{[sdu*|B* : s B*-step function, 0 < s < f},
¢ := sup{[sdu : s step function, 0 < s < f},

v := sup{[gdu*|B* : g B*-measurable, 0 < g < f},
d = sup{[gdu : g measurable, 0 < g < f}.

Then the following statements hold:

(i) b=V, ¢c=c and the suprema in b and ¢ are attained.
(i) a>b>c

(iii) f B*-measurable = a =b.

(iv) f B-measurable = a=b=c.

(v) b<oo=>b=c

(vi) a<oo, a=b = f B-measurable.

Proof. (i) is elementary. (ii) b > c¢ is obvious. a > b follows from (36)
and by applying (4), (7) to p*|B*. (iii) holds by (37) because of the Fatou
property. (iv) Using (37), a = [fdj follows. By the Fatou property the
latter integral is the supremum of integrals of B-step functions < f. Since
these functions dominate step functions with same integrals, a = ¢ follows.



