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Preface

According to a definition stated by Felix Klein in 1872, we can use
geometric transformation groups to classify geometry. The study of proper-
ties of geometric figures (curves, surfaces, etc.) that are invariant under a
given geometric transformation group G is called the geometry beionging
to G. For instance, if G is the projective, affine, or Euclidean group, we
have the corresponding projective, affine, or Euclidean geometry.

The differential geometry of a geometric figure F belonging to a group G
is the study of the invariant properties of F under G in a neighborhood
of an element of F. In particular, the differential geometry of a curve is
concerned with the invariant properties of the curve in a neighborhood of
one of its points. In analytic geometry the tangent of a curve at a point is
customarily defined to be the limit of the secant through this point and a
neighboring point on the curve, as the second point approaches the first
along the curve. This definition illustrates the nature of differential geome-
try in that it requires a knowledge of the curve only in a neighborhood
of the point and involves a limiting process (a property of this kind is said
to be local). These features of differential geometry show why it uses the
differential calculus so extensively. On the other hand, local properties of
geometric figures may be contrasted with global properties, which require
knowledge of entire figures.

The origins of differential geometry go back to the early days of
the differential calculus, when one of the fundamental problems was the
determination of the tangent to a curve. With the development of the
calculus, additional geometric applications were obtained. The principal
contributors in this early period were Leonhard Euler (1707-1783),
Gaspard Monge (1746-1818), Joseph Louis Lagrange (1736-1813), and
Augustin Cauchy (1789-1857). A decisive step forward was taken by Karl
Friedrich Gauss (1777-1855) with his development of the intrinsic geome-
try on a surface. This idea of Gauss was generalized to n(> 3)-dimensional
space by Bernhard Riemann (1826- 1866), thus giving rise to the geqmetry
that bears his name.

This book is designed to introduce differentizl geometry to beginning
graduate students as well as advanced undergraduate students (this intro-
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viil PREFACE
duction in the latter case is important for remedying the weakness of
geometry in the usual undergraduate curriculum). In the last couple of
decades differential geometry, along with othér branches of mathematics,
has been highly developed. In this book we will study only the traditional
topics, namely, curves and surfaces in a three-dimensional Euclidean space
E>. Unlike most classical books on the subject, however, more attention is
paid here to the relationships between local and global properties, as
opposed to local properties only. Although we restrict our attention to
curves and surfaces in E?, mos} global theorems for curves and surfaces in
this book can be extended to either higher dimensional spaces or more
general curves and surfaces or both. Moreover, geometric interpretations
are given along with analytic expressions. This will enable students to
make use of geometric intuition, which is a precious tool for studying
geometry and related problems; such a tool is seldom encountered in other
branches of mathematics.

We use vector analysis and exterior differential calculus. Except for
some tensor conventions to produce simplifications, we do not employ
tensor caiculus, since there is no benefit in its use for our study in space
E>3. There are four chapters whose contents are, briefly, as follows.

Chapter 1 contains, for the purpose of review and for later use, a
collection of fundamental material taken from point-set topology, ad-
vanced calculus, and linear algebra. In keeping with this aim, all proofs of
theorems are self-contained and all theorems are expressed in a form
suitable for direct later application. Probably most students are familiar
with this material except for Section 6 on differential forms.

In Chapter 2 we first establish a general local theory of curves in E3,
then give global theorems separately for plane and space curves, since
those for plane curves are not special cases of those for space curves. We
also prove one of the fundamental theorems in the local theory. the
uniqueness theorem for curves in E?. A proof of this existence theorem is
given in Appendix 1.

Chapter 3 is devoted to a local theory of surfaces in E>. For this theory
we only state the fundamental theorem (Theorem 7.3), leaving the proofs
of the uniqueness and existence parts of the theorem to, respectively,
Chapter 4 (Section 4) and Appendix 2.

Chapter 4 begins with a discussion of onentation of surfaces and
surfaces of constant Gaussian curvature, and presents various global
theorems for surfaces.

Most sections end with a carefully selected set of cxercises, some of
which supplement the text of the section: answers are given at the end of
the book. To allow the student to work independently of the hints that
accompany some of the exercises, each of these is starred and the hint
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together with the answer appear at the end of the book. Numbers in
brackets refer to the items listed in the Bibliography at the end of the
book.

Two enumeration systems are used to subdivide sections; in Chapters 1
(except Sections 4 and 7) and 2, triple numbers refer to an item (e.g., a
theorem or definition), whereas in Chapters 3 and 4 such an item is
referred to by a double number. However, there should be no difficulty in
using the book for reference purposes, since the title of the item is always
written out (e.g., Corollary 5.1.6 of Chapter 1 or Lemma 1.5 of Chapter 3).

This book can be used for a full-year course if most sections of Chapter
1 are studied thoroughly.

For a one-semester course I suggest the use of the following sections:

Chapter 1: Sections 3.1, 3.2, 3.3, 6.

Chapter 2: Section 1.1 (omit 1.1.4—1.1.6), Section 1.2 (omit 1.2.6, 1.2.7),
Section 1.3 (omit 1.3.7-1.3.12), Sections 1.4 and 1.5 (omit 1.5.5); Section 2
(omit 2.3, 2.5, 2.6.4-2.6.6, 2.9-2.11, 2.14-2.23); Section 3 (omit 3.1.8—
3.1.14).

Chapter 3: Section 1 (omit the proof of 1.6, 1.7, 1.8, the proof of 1.10,
1.11-1.13, 1.15-1.18); Section 2 (omit the proof of 2.4); Sections 3-9;
.Section 10 (omit the material after 10.7).

Chapter 4: Section 1 (omit the proofs of 1.3 and 1.4); Section 3 (omit
3.14); Sections 4 and 5.

For a course lasting one quarter I suggest omission of the following
material from the one-semester outline above: Chapter 2: the second proof
of 2.6, 3.2; Chapter 3: the details of 1.3 and 1.4, the proof of 5.7, Section 6,
the proofs of 8.1 and 8.2; Chapter 4: Section 5.

I thank Donald M. Davis, Samuel L. Gulden, Theodore Hailperin,
Samir A. Khabbaz, A. Everett Pitcher, and Albert Wilansky for many
valuable discussions and suggestions in regard to various improvements of
the book; Helen Gasdaska for her patience and expert skill in typing the
manuscript; and the staff of John Wiley, in particular Beatrice Shube, for
their cooperaticn and help in publishing this book.

CHUAN-CHIH HSIUNG

Bethlehem, Pennsylvania
September, 1980



General Notation
and Definitions

NOTATION
Symbol Usage Meaning
€ xEA X is an element of the set A
& x&A x is not an element of the set 4
C Bc4 The set B is a subset of the set A4
%} 1] The empty set
ANB Intersection of the sets A and B
A [ NA,; Intersection of all the sets A4;
AUB Union of the sets 4 and B
u { U4, Union of all the sets A4,
{} {x]---} The set of all x such that - - -
= B — - - - implies
< < - - - if and only if
- A—B Function on the set A to the set B
- xt->x? Function assigning x2 to x
B [a, b] {x|a<x<b}
G) (a, b) {x|a<x<b}
DEFINITIONS

A function fon a set A to a set B is a rule that assigns to each element x
of 4 a unique element f{ x) of B. The element f(x) is called the value of f at
x, or the image of x under f. The set A is called the domain of f, the set B is
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XVi GENERAL NOTATION AND DEFINITIONS

often called the range of f, and the subset of B, denoted by f( 4), consisting
of all elements of the form f(x) is called the image of f.

If both f, and f, are functions on 4 to B, then f, =/, means that
Ji(x)=f(x) for all xeA.

Let f: A->B and g: B—>C be functions. Then the function g(f): A—>C,
whose value on each x€A4 15 the element g( f(x))EC, is called the
composite function of f and g, denoted by g f.

If f: A—>B s a functicn, C is a subset of 4. and D is a subset of B, the
restriction of fto C is the function f |C: C-» B defined by the same rule as f,
but applied only to elements of C, and the subset of 4 consisting of all
x € A4 such that f(x)€E D is called the inverse image of D and is denoted by
fD).

A function f: A —B is said to be one-to-one or injective if x5y implies
f(x)= f(y). An mmjective function 1s called an wjection. f is said to be onto
or surjective 1f to each element b€ B there exists at least one element e € A
such that f(a)=5h. A sugective function s called a surjection. A function
that 1s both injective and surjective is said to be bijective. A bijective
function 1s also called a biyection.

Note that under a byective function f: 4B, gach ¢lement bE B is the
image of one and only one element a&=A. We then have an inverse
function f "', defined throughout B. which assigns to each element bE B
the unique element ¢ €A such that b=f(a).

Let ¥ be a nonnegative integer. A function on a Euclidean n-space £” to
the rea! line £' is said to be of class C* (respectively, C*) or a C*
(respectively, ) function if its partial denivatives of orders up to and
inciuding k (respectively, of all orders) exist and are continuous. A C°
function means merely a continuous function.

The words “set,” “space,” and “collection™ are synonymous, as are the
words “function™ and “mapping.”
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1

Euclidean Spaces

This chapter contains, for a Euclidean space of three dimensions (exten-
sion to higher dimensions is virtually automatic), the fundamental material
that is necessary for later developments of this book. Although most
students are probably familiar with a great part of the material, its
placement in one chapter makes it convenient for purposes of review and
also allows us to bring out more clearly relationships among certain
notions. Depending on ihe backgrounds of the students, certain sections
may be selected for more thorough study.

1. POINT SETS

1.1. Neighborhoods and Topologies. Let E> be a Euclidean three-
dimensional space. In the usual sense, in £* we take a fixed right-handed
rectangular trihedron 0x,x,x, (see Fig. 1.1), that is, a point 0, called the
origin of E 3, and mutually orthogonal coordinate axes x,,X,,X;, whose
positive directions form a right-handed trihedron. Then relative to 0x,x,x; a
point x in E? has coordinates (x;, x,, X;). More generally, we have the
following definition.

L1.1. Definition. A Fuclidean n-dimensional space E” is the set of all
ordered n-tuples x=(x,,- - -, x,) of real numbers. Such an n-tuple is a point
in E”.

In accordance with our stated purpose, here and throughout this book
we limit our discussions to n=1,2,3.

Let u,,- - -, u, be real-vaiued functions on E” such that for each point
x=(xh' Ty .x"),

w(x)=xp, - u,(xX)=x,.



2 I. EUCLIDEAN SPACES

%y
0 %2
X, Figure 1.1
These funciions u,,- - -, ¥, are called the natural coordinate functions of E S
The distance d(x,y) between two points x=(x;,---,x,) and y=
(»1s- -+ y,) in E" is defined by the formula
d*(x,y)= 2 (x,~y)’,  d(xy)>0. (1.1.1)

i=1

It is obvious that d(x,y)=0 if and only if x;, =y,,i=1,-- -, n, that is, if and
only if x coincides with y. Furthermore, we have d(x,y)=d(y,x) and the
triangle inequality for z€ E"”

d(x,y) +d(y,z) > d(x,z). (1.1.2)

1.1.2. Definition. An open spherical neighborhood of a point p, in E" is
the set of the form

{pEE"|d(p.Ro) <p), (1.1.3)

where p >-O. More generally, a neighborhood of py is any set that contains a
spherical neighborhood of py.

For n=3 it is convenient to use open spherical neighborhoods. However,
for n=2 a neighborhood of p, is any set that contains some open disk
{pEE?|d(p,pp) <p} about py, and for n=1 it is an open interval contain-
ing py-

We can casily obtain Lemma 1.1.3.

1.1.3. Lemma. The neighborhoods of a point py in E" have the following
properties:

(a) p, belongs to any neighborhood of p,.

(b) If U is a neighborhood of py, and V a set such that VO U, then V is
also a neighborhood of p,.

(¢) If Uand V are neighborhoods of py, so is UNV.

(d) If U is a neighborhood of py, there is a neighborhood V of py such that
VCUand V is a neighborhood of each of its poiwts.
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L1.4. Definition. In general, a topological space is a set S together with
an assignment to each element p, €S of a collection of open subsets of S
(see Definition 1.2.1), to be called neighborhoods of p,, satisfying the four
properties listed in Lemma 1.1.3, and the collection of the neighborhoods
of all points of S is a ropology for the space S.

Thus a Euclidean space E” and the unit sphere in E> with center at the
origin are both topological spaces.

L.1.5. Definition. Let S be a topological space, T a subset of S, and p a
point of T. Then a subset U of T is a neighborhood of p in T if U=TnNV,
where V is a neighborhood of p in S. The neighborhoods U in T so defined
have the four properties in Lemma 1.1.3. When T is made into a topologi-
cal space by defining neighborhoods in this way, it is a subspace of S, and
all the neighborhoods form a relative topology of S for the space T.

In the remainder of this section, unless stated otherwise, all spaces are
supposed to be topological and all sets are to be in a general topological
space, although we shall be interested only in spaces E” for n=1,2,3.

L.1.6. Definition. With respect to a subset T of a space S, each point p
has one of the following three properties:

(@) pisinterior to T if pET and T is a neighborhood of p. The. set of all
the points interior tc T is the interior of T.

(b) p is exterior to T if p& T and there is a neighborhood of p that is
disjoint from 7, (i.e., has no points in common with T').

(c) p is a boundary point of T if p is neither interior nor exterior to 7.
The set of all boundary points of T is the boundary of T and is denoted by
aT.

From the definition above it follows that an interior point of T is
surrounded completely by points of 7, that there are no points of T that
are arbitrarily close to an exterior point of 7, and that a boundary point of
T may or may not belong to 7.

The following is a frequently used method of obtaining new spaces from
given spaces.

Let S and T be nonempty spaces. The set SX T, called the Cartesian
product of S and T, is defined to be the set of all ordered pairs (p, g) where
pES and g€T. This set is made into a space as follows. If (p,g)ESXT,
then a neighborhood of (p,q) is any set containing a set of the form
Ux ¥V, where U is a neighborhood of p in S, and ¥V is a neighborhood of ¢
in 7. It is not hard to see that the neighborhood axioms a—d of Lemma
1.1.3 are satisfied.
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L.1.7. Definition. SxT, made into a space as just described, is the
topological product of S and T.

Examples. 1. If S=T=E", then SXT is the plane with its usual topol-
ogy (ie., is E?).
2. If S=E?and T=FE', then SXT=E3. In general, E"XE"=E™*",
3. If Sis an interval on E', and T is a circle, then SX T is a cylinder.
4. The torus is the topological product of a circle with itself.

Exercises

1. Prove Lemma 1.1.3.

2. Let S={all (x, y) with x and y rational numbers}. (a) What is the
interior of S? (b) What is the boundary of S?

1.2. Open and Closed Sets, and Continuous Mappings

1.2.1. Definition. A subset T of a space S is open if every point of T is
interior to T; this 1s the same as saying that no boundary point of T
belongs to T. A subset T of a space S is closed if every point of S that is
not in 7 is in fact exterior to 7 this is the same as saying that every
boundary point of T is in T. The empty set, denoted by &, is an open set
that contains no elements and is therefore a subset of every set. '

The behavior of open and closed sets under the operations of union and
intersection is of fundamental importance and is described by the follow-
ing theorem.

1.2.2. Theorem. (a) The union of any collection of open sets in a space S
is open.

(b) The intersection of a finite collection of open sets in S is open.

(c) The intersection of any collection of closed sets in S is closed.

(d) The union of a finite collection of closed sets in S is closed.

Proof. (a) Let {U} be a collection of open sets in S, where i ranges
over some set of indices. Let U= U U, and take p in U. Then p€ U for
some i, and by Definition 1.2.1, U, is a neighborhood of p. Since UD U,, U
is a neighborhood of p by Lemma 1.1.3(b). Thus U is a neighborhood of
each of its points and is therefore open by Definition 1.2.1.

(b) Let U, and U, be open sets in S and take p€ U, N U,. Then by
Definition 1.2.1, U, and U, are neighborhoods of p. From Lemma 1.1.3(c)
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it thus follows that U, N U, is a neighborhood of p. Since p is arbitrary,
U, N U, is open by Definition 1.2.1. Using mathematical induction, we can
extend this to a finite collection of open sets in S.

Parts (c) and (d) of Theorem, 1.2.2 are obtained from parts (a) and (b) by
considering the complementary sets.

Remark. The statement of Theorem 1.2.2b may not be true if “finite” is
replaced by “infinite.” For example, if S is the real line E !, and U, is the
open interval (—1/n,1/n), then each U, is an open set, but the intersec-
tion of all the U, is the point 0, which is not open.

1.2.3. Defmmition. A point p is a limit (or cluster or accumulation) point of
a set T if every neighborhood of p contains a point of T distinct from p.
The closure of a subset T of S, denoted by T, is the union of 7 and the set
of its limit points.

Example. Consider the set
S={p€e€E?|0<d(p,0)<1}u {the point (0,2)},

where 0 is the point (0,0). The boundary of S consists of the cir-
cumference, where d(p,0)= 1, and the two points 0 and (G, 2). The interior
of S is the set of points p with 0<d(p,0)< 1, and the closure of § is the set
consisting of the point (0,2), together with the unit disk, the set of all
points p such that d(p,0)< 1.

1.2.4. Defimition. Le’ 7 hc a subset of a space S. The set of all points of
S that are not in T is the complement of T in S, and is denoted by S—T.

The following iemma is an immediate consequence of Definitions 1.2.1
and 1.2.4.

1.2.5. Lemma. A subset T of a space S is open (respectively, closed) if and
only if S—T is closed (respectively, open).

1.26. Theorem. Let T be any subset of a space S. TFen T is closed if and
only if T=T.

Proof. First suppose that T is closed. Then S—T7 is open. If S—T
contains a limit point p of 7, then every neighborhood N(p).of p contains
a point of T, and N(p)Z S-- T. This contradicts the fact that S— T is open.
Hence T=T.

Conversely, suppose that 7=T. Let pES—T. Then p&T, and p is not a
limit point of 7. Thus p has a neighborhood that contains no point of T
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and belongs to S— 7. This shows that S— T is open, and therefore that T is
closed.

1.2.7. Definition. Let S and T be two spaces. A mapping f: S—T is
continuous at a point p €S if for any neighborhood ¥ of f(p) in T there is a
neighborhood U of p in § such that f(U)CV. f is continuous if it is
continuous at each point p in S.

1.2.8. Definition. Let S and T be two spaces, and f: S—T be a bijection.
If both f and its inverse f ' are continuous, then f is a homeomorphism, and
S and T are homeomorphic.

Exercises

1.

*2.

*3.

By constructing an example, show that the union of an infinite
collection of closed sets may not be closed.

Show that (a) the interior of a set S is the largest (in the sense of
inclusion) open set contained in S, and (b) the closure of a set S is the
smallest closed set that contains §.

Let C be a closed set, and U an open set. Prove: (a) C—U=(allpEC
with p& U} is closed, and (b) U—C is open.

Show that if p is a limit point of a set S in E”, then every neighbor-
hood of p contains infinitely many points of S.

If S and T both are the real line, the usual definition of continuity is
that f: S—T is continuous at x €S if for any e >0 there is a § >0 such
that | f(x")—f(x)| <e whenever x’ €S and |x’— x| < 8. Prove that this
is equivalent to Definition 1.2.7.

Let S and T be two spaces and f: S—7 a mapping. Prove that f is
continuous if and only if the inverse image of any open set in T is
open in S. Use this to show that the composition of continuous
mappings is continuous.

Let S be the union of two closed sets U and V, and f: §—T a
mapping. Suppose that the restriction of f to U and to ¥ are
continuous mappings of U and V into T, respectively. Show that f is
continuous. Given an example to show that this does not hold if U
and V are not closed. »

* Asterisks indicate exercises for which hints are provided at the end of the book.



