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Preface

These notes are an elaboration of the first
part of a course on foliations which I have given

at Strasbourg in 1976 and at Tunis in 1977.

They are concerned mostly with dynamical sys-
tems in dimensions one and two, in particular with
a view to their applications to foliated manifolds.
An important chapter, however, is missing, which

would have been dealing with structural stability.

The publication of the French edition was re-
alized by the efforts of the secretariat and the
printing office of the Department of Mathematics
of Strasbourg. I am deeply grateful to all those
who contributed, in particular to Mme. Lambert for
typing the manuscript, and to Messrs. Bodo and Christ

for its reproduction.

Strasbourg, January 1979.
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Chapter |. Vector Fields on Manifolds

1. INTEGRATION OF VECTOR FIELDS

Let M be a differentiable manifold without boundary of dimen-
sion m and of class Cs, 2 < s ¢ +o (respectively analytic), and let X

be a vector field on M of class Cr, 1l < r £ s-1 (respectively analytic).

1.1. DEFINITION. An integral curve of X is a map c of class Cl of an

interval J of R into M satisfying c¢'(t) = X(c(t)) for all t € J.

-+t

1.2. Examples.

i) If y is a zero of X then the constant map of R onto y is
an integral curve of X.

In this case y is called a singular point of X. A point of M

-where X does not vanish is a reqular point.
ii) If ¢ is an integral curve of X, so is the map t+—>c(t+T1),

for all 1 € R.



iii) If ¢ is an integral curve of X the map t~sc(-t) is an integral
curve of the field -X.
iv) Let q: M—>M be a covering map. Then the tangent bundle T (M) is
isomorphic to the inverse image g*T(M) of the tangent bundle T (M) by
the projection g. Hence there is a uniquely defined vector field ¥ on
M (in the same differentiability class as X) such that qT°X==X ° .
In this case the projection c = geC of an integral curve ¢ of
X is an integral curve of X.
Conversely every integral curve of X is the projection of an inte-
gral curve of ;,
v) Let X and Y be vector fields on manifolds M and N respectively
and h: M—->N a differentiable map satisfying hTe X = vch. Then the image

under h of any integral curve of X is an integral curve of Y.

1.3. Remarks.

i) Let (yl, SEE ym) be a local system of coordinates on an open
set U of M, and let X be expressed on U as Yaj 3 . Then the integral
“ d3Y;

curves of X in U are the solutions of the (autonomous) system of dif-

ferential equations yi = ai(yl’ 5 d b ym), iI= 1, seee Me
ii) If N =M ¥ R, a vector field Y on N of the form Z(y,s) +-§i- -
s

with Z(y,s)C-TyM, corresponds locally to a non-autonomous system of

differential equations y; = bi(yl' 58 ym, t) ; i=1,..., m.

The above remark (i) allows a reformulation of the local existence
and uniqueness theorems for solutions of differential equations, as
well as of the statements about their differentiable dependence on ini-

tial conditions as follows (cf. [}O}, i}Z]):

l.4. THEOREM. For every point y of M and for every real number T there



exist an open neighkourhood U of y in M,

a number € > 0,

a map ¢ of class ¢t (respectively analytic) of (T-€, T+€)X U
into M,
satisfying for every point x of U the following properties:

a) t =»3(t,x) is an integral curve of X;

b) &(T, x) = x;

c) if ¢ is an integral curve of X defined on an interval con-

taining T and such that c(T7) = x, then c(t) = 3(t,x) in a neighbour-
hood of T .
Consequences:

i) Two integral curves of X intersecting in a point coincide
in a neighbourhood of this point;
ii) let Ui, €L, LER i =1,2, be two sets of data as in theo-

rem 1.4 with the properties a),b), and c). If & = inf (¢ ,£,) and

v="0UNTU

1 5 then &,= &, on (T-¢, T+% x V.

1.5. COROLLARY. There exist an open neighbourhood W of {0} X M in
R X M and a map & of class CY¥ (respectively analytic) of W into M with
the following properties satisfied at every point y of M:

a) R x {y} N W is connected;

b) t—8&(t,y) is an integral curve of X;

c) 8(0,y) = y;:

d) if (t',y), (t+t',y) and (t,8(t',y)) are in W, then
(t+t',y)=28(t,8(t',y)).

Furthermore, if Wi' 2., i=1,2, are two such data satisfying a),

b), and c), then they also satisfy d), and ¥;= %, on WyN Wy



Continuing with these notations we let V be an open set of M
such that -{t}x v and {-t§x @({t&x V) are contained in W. Then @({t}x v)
is open in M, and the map P.: x+=% (t,x) is a diffeomorphism of V onto
this open set having the inverse P_p: z=>8(-t,z).

In addition, for {t'}x v, {t+t'} x v, and {t} x s({t’} x V) being
contained in W as well, we have Pppp = Wt°@t,on V. These remarks and the

considerations in §1.7 justify the following definition:

o+ ==

1.6. DEFINITION. A local one-parameter group of diffeomorphisms (or a

flow) of class Cr(respectively analytic) of M is an ordered pair (W, 3),
where W is an open neighbourhood of {O}x M in R x M and % a map of class
ct (analytic) of W into M, having at every point y of M the following

properties:

a)R xX{y}N W is connected;

b) ¥(0,y) y:
c) if (t',y), (t+t',y), and (t, %(t',y)) are in W then

3(t+t',y) =8 (t, 8 (t',y)).



1.7. For W= RxM, 3 is a (global) one-parameter group of diffeomorph-

isms of M. In this case the map ¥ : x+»3%(t,x) is a diffeomorphism of M
ORI t
for every t€R , and we have:

i) ¢, = idencity map;

7

ii) = wt°t

Pe+ee P

. -1 _
iii) (@) Pt
In other words, % is a differentiable (analytic) action of R

on M.

Such a flow will often be denoted by (wt) *
teR

1.8. Remark. A vector field X on M allows the construction of a flow
(W, 3) of diffeomorphisms of M (of the same differentiability class as X)
such that for every point y of M the curve ti1—3%(t,y) is an integral
curve of X. (W,3) is a local one-parameter group generated by X.

The germ of such a flow along {O}x M is uniquely determined
by X (corollary 1.5).

Conversely, if (W, &) is a flow of class CY¥ (respectively ana-
lytic) on M, there exists one and only one generating vector field X

r-1

of class C (respectively analytic): the value of X at a point ye€M

is the vector tangent in y to the curve t—>%(t,y). This field whose

; ; 9% g r-1 ;
value at the point y is —— (0,y) is of class C . It is easy to see,
ot

by using properties of flows, that its integral curves are the maps

t—=d(t,y).

1.9. PROPOSITION. The set of all flows generated by the vector field
X, ordered by inclusion, has a unique maximal element.
The "union" of all flows generated by X is indeed itself a

flow generated by X.



If this local one-parameter group is a global group, X is cal-

led a complete vector field.

1.10. Examples.

i) The vector field X = y‘x.—é— is complete on R™: it gene-
i toxj
rates the flow of all homotheties of R™ (the diffeomorphism @t is
the homothety of ratio et).
ii) The maximal flow on R generated by the field X = xzég-
%
is given by w =.{(t,x)€lRﬂR 1-tx - 0},
(tx) = & .
1 - tx

1.11. Remarks.

i) In the case of the covering map of example iv) of 1.2, the
two vector fields X and X are simultaneously complete or not complete.

ii) If the vector field X is complete and generates a flow
(QPt)teR on M, one has wE°X°w_t = X for every t € R: every diffeomorph=-
ism %, transforms any integral curve of X into another one.

It follows that for a submanifold N of codimension 1 of M
which is transverse )to X the submanifold ¢t(N) remains transverse to
X for every t € R. Hence the map (t,x)-nawt(x) is then a submersion of

R X N into M.

* A submanifold N of codimension 1 is transverse to X if for every

point y of N the vector X(y) does not belong to the tangent hyperplane
Ty(N) to N at y.
If dimension M=2, and if N is diffeomorphic to the circle

Sl (or an interval of R) one calls N a closed transversal (respectively

a transverse arc) to X.




iii) Let Y be a complete vector field on the product MXR of
the form Z(y, s) +€2—, Z(y,s) € TyM. Then the flow generated on MXR may
be written as (t,y,s)l——»(ft s(y),t+s), where ft s is a family of diffeo-

morphisms of M satisfying the following properties:

a) fO .= identity map for every s;
b) fiier, s = e, e Epr g i

-1 _
c) (ft,s) - f—t,t+s :

Letting e g = ft- we thus obtain a family of diffeomorph-

s, s

isms of M with the following properties:

a) gs,s = identity map for every s ;
b) gt,s° gs,r = gt,r g

-1
c) (gt,s) = gs,l': °

This family is therefore determined by the "isotopy of the

, because of g ™= °h;l s

identity" h_ =g t

t t,0

Furthermore, keeping y and s fixed, the curve t+—s gt,s(y)
is the solution of the non-autonomous system z'=2Z(z,t) with initial
condition z(s) =y. The diffeomor-
phism Jt, s may thus be interpre-
ted as the translation of MX {s}
to MX {t} along the integral

curves of Y.

If Z is periodic with

period T we have gt+T’s+T=gt,s .

=%

Then the field Y induces a vec-

1
1
1
1
1
|
I
I
|
}
|
|
[}
1
|
1
|
|
]
=
E |
I
I

tor field on the cylinder

1

MXx ST =MX (R/TZ) (cf. exercise ii) of II-1.12).
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1.12. THEOREM. A vector field with compact support is complete. (The
support of a vector field is the closure of the set of its regular
points.)

In particular every vector field on a compact manifold is com-

plete.

Theorem 1.12 is an immediate consequence of the following lem-

ma:

1.13. LEMMA. Let (W,%), with W= U (¢ ,w ) X y , be the maximal flow
- vyEM vy ¥y

generated by X, and let the curve @(IO,wx)x X ) be relatively compact

for a certain point x of M. Then wx==+co .

Proof.

Assume the curve @({O,wx)xix}) to be relatively compact and Wy finite,

and let y be a point of accumulation of 2%(t,x) for t tending towards w, -

T

We choose an open neighbourhood U of y, a number e between 0O
and O and a differentiable map Y: (-¢,+e¢)x U—>M having the properties
a), b), and c) of theorem 1l.4.

Let Te(wx-e, mx) such that 3%(t,x) € U, and let V be an open



neighbourhood of x such that {T}X V is contained in W, and @([r}x V)
in U.
Under these conditions % can be extended to the open set
WU ((wg—€, TH4e) % V) by defining &(t,z) = Y(t-T, &(T,z)) for z € V and
t € (wx—e, T+e).
We thus obtain a new flow generated by X and strictly greater

than (W, 3) which is contrary to the assumption of maximality. Q.E.D.

M

| besam==s
;| A, T

5 || SO

~
wE€
m
x
3
Ty I
m
o]

Still denoting by (W,%) the maximal flow generated by X we can

draw the following conclusions from lemma 1.13:

1.14 PROPOSITION. Every integral curve of X assuming the value y for
t =7 is the restriction of the map t+>3%(t-T,y) to a subinterval of

a-T, w -T).
( y Yy )

1.15 COROLLARY. A vector field X is complete if .and only if every in-
tegral curve of X can be extended to an integral curve defined on all

of R.
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1.16 PROPOSITION. Let Y be a vector field on the product M x R of the
form z(y,s) +-§% , with Z(y,s) € TyM, and let the projection onto M of
the support of Z be relatively compact. Then the field Y is complete.

1.17. In view of proposition 1.14 the curve cy defined on the interval

(dy,wy) by t+>8&(t,y) is called the maximal integral curve of X passing
through y.

The images of any two maximal integral curves are either dis-
joint or they coincide. The set of these images defines thus a parti-
tion of M; its elements are called the orbits of X. In particular the
singular points of X are point orbits. All other orbits are called non-
sinqular. The quotient space of M by the partition of orbits of X is

called the orbit space of X.

1.18. Classification of Orbits. A first classification of the orbits

of the vector field X may be obtained by observing that, for a given
orbit v, all maximal integral curves cy, YeVY, which parametrize vy, sa-

tisfy simultaneously one of the following three properties:
i) Cy is injective;
i) cy is neither injective nor constant;
iii) cy is constant.

In the first case the map cy is an injective immersion of the
interval (ay'wy) into M; but it is not necessarily an embedding: there
exist, e.g. on the torus T2, vector fields all of whose orbits are eve-
rywhere dense (cf. example 4.12).

In the second case, if cy(b) = cy(a), b > a, the map cy is de-

fined on R (lemma 1.13), and is periodic with a minimal period T which

is a fraction of b-a (this period is evidently independent of the choice
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0f the point y on y). y is then called a periodic orbit of X, of period

T, it is a sub=manifold of M diffeomorphic to the circle Sl.

Finally, in the third case, y is a singular point of X.

1.19. PROPOSITION. Let X be a vector field on the paracompact mani-
fold M. There exists a strictly positive function f on M, of the same
differentiability class as X, such that the vector field Y = £fX is
complete.
Proof. Paracompactness of M implies the existence of a proper function
g of class C5 on M. Let f = exp(-(Xg)2). If Y = £X, then
IYgl = l(Xg)exp(—(Xg)z) L 1 on M. If c denotes an integral curve of Y
defined on a bounded interval J, then é% (gec) = (Yg) °c; hence
‘é%(gnc)l L 1 on J.

‘Thus the image of g° c is bounded and hence the image of c is
relatively compact. The proof is concluded by an applicationof lemma 1.13.

Q.E.D.

1.20. Remark. If ¢ is the maximal integral curve of the vector field X
passing through z, and if f is a never vanishing function on M, then
the maximal integral curve of Y = fX through z is the map ti—c(h(t)),
where h is the maximal solution of the differential equation

%% = f(c(s)) satisfying h(0)= 0. Thus these maximal integral curves
differ only by a change of parameter, which preserves the orientation
for positive f. Hence the orbits of X and Y coincide. We may thus as-
sume, in what follows, the field to be complete (as far as properties
of the orbits of a vector field on a paracompact manifold which are in-

variant with respect to parameter transformations are concerned) .

As an example we have
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1.21. PROPOSITION. The equivalence relation on M whose classes are the

orbits of a vector field is open.

Indeed, denoting by (@t)teR the one-parameter group of diffeo-
morphisms of M generated by the given complete vector field, and by U
an open set of M, then tl(JRtPt(U) (the "saturated set" of U) is open.
1.22. Remark. Some of the preceding results may be extended to the case
where M is a manifold with boundary, provided that the vector field X
has a "sufficiently nice" behaviour on the boundary of M; for example
if it is either tangent or transverse to the boundary.

In particular, if X is a vector field on M transverse to the
boundary and pointing inward along the boundary, one obtains, by restrie-
tion to positive times, a local one-parameter semigroup of diffeomorph-
isms of M.

Using a partition of unity in the case of a paracompact mani-

fold M one can construct such an inward pointing vector field which is

"positively complete". Hence:

1.23. THEOREM. Let M be a paracompact manifold with boundary. There
exists a diffeomorphism h of 3M X [Q,+w) on an open set V of M satisfy-
ing h(y,0) = y for all y ¢ OM.

V is then called a collar of the boundary of M.

1.24. Exercise. Let M and N be two compact manifolds with boundary of
the same dimension, and let h be a diffeomorphism of a component of
the boundary of M onto a component of the boundary of N. Then there

exists on the adjunction space V = M UhN (obtained by glueing M to N



