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Preface

The conventional finite element method is based on the assumption that structural system
displacements under load are small and that the structural material does not stretch much under
that load. Arguably, the small strain, small displacements-based finite element method is not
of much use in modern scientific, engineering and technological applications. Even in
classic structural engineering applications, the conventional finite element method is hardly
applicable. This shift has occurred because design codes and standards have changed in recent
years to include the ultimate limit state, i.e., considerations of structural collapse. As a conse-
quence, one now has to consider both large strains (plastic strains) and large displacements. In
other state of the art applications of the finite element method, finite element simulations are
increasingly becoming an integral part of the so-called virtual experimentation, examples of
these are biological, medical science, material science, process engineering, military and many
other applications of the finite element method. In these applications the finite element simu-
lation has to reproduce reality (as opposed to approximating reality), together with possible
emergent properties such as flow, damage, failure, collapse, yield, etc.

In this context, not even the higher order theories and their finite element realizations are
suitable representations of the physical realities involved. The answer is an exact formulation
that encompasses an exact representation of large displacements, large strains, and material
properties including anisotropy. Such a theory, when implemented in a finite element software
package, must cover 2D solids, 3D solids, and 2.5D shell and membrane static and dynamic
simulations.

Theoretical aspects of these formulations were resolved in the 1960s and 1970s. The finite
element adaptation of these theoretical formulations has mostly taken place during the 1990s
and early years of the 21st century. This work has resulted in a large body of scientific papers
that have described it as the next generation of finite element packages. Nevertheless, the
subject has remained a mystery for undergraduate students, postgraduate students, practicing
engineers and scientist and even for users and developers of finite element software.

This book is written with the key objective of “demystifying” the subject, making it easy for
students, engineers and software developers to master the minute details of the finite element
method that incorporates large strains, large displacements, and material nonlinearity.
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The book is written in such a way that it provides a pathway to master all the method’s related
subjects starting with matrices, systems of equations, scalar and vectors and progressing onto
tensors of the first order, and tensors of the second order. With this knowledge base in hand, the
book provides an engineering-based approach to deformation kinematics that avoids the often
confusing mathematical jargon yet concentrates on the physics and uses mathematics only
when necessary. At this stage, the reader is made familiar with a generalized framework for
developing large strains based nonlinear material laws. This is done without any reference
to the finite element method, having in mind, for example, a material modeler whose job is
to solely develop material laws.

Finally, the book presents the large strain large displacement based finite element method
including 2D solid, 3D solid, 2.5D membrane, plate and shell problems. These are explained
in such detail that they contain all the necessary mathematical equations, algorithms and for-
mulae that can be readily implemented into the finite element method. As such, they should be
of great value for developers of finite element packages. They will also provide users of finite
element packages with an enhanced understanding of the algorithmic, theoretical and formu-
lation aspects of the finite element software they are using.

The authors hope that the book will ultimately benefit practicing engineers, scientists, under-
graduate students, master students and PhD students in diverse fields of related applied
subjects.
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