Computational
Methods In

Potential
Aerodynamics

Editor:

- L.Morino




Computational
Methods in
Potential
Aerodynamics

Editor:
L. Morino

A Computational-Mechanics Publication

Springer-Verlag
Berlin Heidelberg New York Tokyo



Acknowledgement for cover illustration: Grumman Aerospace Corporation. The
Grumman X-29 is the world’s first supersonic forward swept wing aircraft. Compared
to conventional aft swept wings, forward swept wings offer higher maneuverability
and lower drag across the aircraft’s entire operational envelope. The X-29 completed
its first flight on December 14th, 1984, and its flight test program is continuing under
the auspices of NASA.



II

Computational Mechanics Publications
Ashurst Lodge

Ashurst

Southampton

Hampshire SO4 2AA

UK

British Library Cataloguing in Publication Data
Computational methods in potential aerodynamics

1. Aerodynamics Mathematics
I. Morino, L.
533’.62° 0151 QA930

ISBN 0-905451-37-6

ISBN 0-905451-37-6 Computational Mechanics Centre, Southampton
ISBN 3-540-159274 Springer-Verlag Berlin, Heidelberg, New York, Tokyo

ISBN 0-387-159274 Springer-Verlag New York, Heidelberg, Berlin, Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to ‘Verwertungsgesellschaft Wort’,
Munich.

© Computational Mechanics Publications, 1985
Springer-Verlag Berlin, Heidelberg
Printed in Great Britain at the University Press, Oxford.

The use of registered names trademarks etc. in this publication does not imply, even
in the absence of a specific statement that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.



To my mother, Maria A. Corbo.



VII

PREFACE

This volume is based on edited Proceedings of a recent ICTS course, held in Amalfi,
Italy, which dealt with Computational Methods in Potential Aerodynamics. The
field of Computational Aerodynamics covers many areas in which the methodologies
are markedly different. For instance, the integral-equation methods (also known as
panel methods or boundary element methods) are widely accepted for linear (subsonic
and supersonic) flows whereas the nonlinear (transonic) flows are typically approached
by the finite-difference method. Also, different methodologies are used to solve
steady-state flows, oscillatory (complex exponential) flows and transient flows.
Other differences occur in the formulations for airplanes vs. helicopters (fixed wing
vs. rotary wing aerodynamics) and in analysis vs. design. The objective of the course
was to bring together widely recognized specialists from all these areas in order to
compare and contrast the different approaches to the problems (linear and nonlinear
aerodynamics, steady and unsteady flows, fixed wings and rotary wings, analysis
and design). The speakers included representatives from industry, government and
universities in order to achieve a proper balance between theory and applications,
current methodology and future trends. '

This volume is divided into seven parts.

I Introduction

11 Steady Subsonic and Supersonic Flows
III  Unsteady Subsonic and Supersonic Flows
IV Steady Transonic Flows

A% Unsteady Transonic Flows

VI Wake Analysis

VII Recent Developments

This division reflects the actual organization of the course. Some of the papers
span more than one category. Therefore, it is appropriate to elaborate further on the
organization of the material. Part I of the volume is an introduction of the formulation
of potential flows. In most of the following papers it is assumed that the reader is
familiar with this classical material, which is included here for the sake of completeness.

Part II covers steady subsonic and supersonic flows. The methodology for the
computation of these flows is in a mature stage of development. Panel methods
are now classical and widely accepted in the aerospace community. Two papers
by J L Hess and by E N Tinoco and P E Rubbert cover a historical review as well as
recent developments.

Part III, unsteady subsonic and supersonic flows, includes a historical review by
E C Yates, Jr, and papers on the three main methodologies in the field, which are all
of the integral-equation type. The classical approach, the lifting surface method is
covered by W S Rowe. The doublet-lattice method, widely used in industry, is covered
by J P Giesing. The Green’s function method is covered by M I Freedman; applications
are found in the paper by K Tseng in Part V. In the last paper in this group, I tried to
show how the above methods are all closely related to the concepts of Green’s function
and Green’s theorem.

The material covered in Part IV, steady transonic flows, has been the subject of
major research activity in the past few years and is still under development. The
finite-difference method, the standard technique in this area, is reviewed in the paper
by D Nixon. Application to analysis and design are presented in the papers by C Boppe,
by J W Slooff and by E N Tinoco and P E Rubbert.
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Unsteady transonic flows are covered in Part V, which includes an overall review
by E C Yates Jr, a paper on finite difference by F X Caradonna (with emphasis on
helicopter aerodynamics) and one on integral equations by K Tseng.

Formulations for steady and unsteady, incompressible and compressible, wake
analysis are covered in Part VI. The vortex-layer approach is reviewed in the paper
by O A Kandil whereas the doublet-layer approach is reviewed in the paper by S R
Sipcic and myself; the link between these two formulations is discussed in my paper
in Part III.

Finally recent developments are covered in Part VII. A paper by J W Slooff covers
integral equation methods for subsonic and transonic flows. A second paper by myself,
M I Freeman, D J Deutsch and S R Sipcic presents a new integral-equation formulation
for a frame of reference moving in arbitrary motion (with emphasis on helicopter
rotors). '

In addition, original contributions (presented at the course in the session on Recent
and Current Development) are found in the paper by J P Giesing in Part III (section
on unsteady transonic flows), in my paper in Part III (appehdix on two dimensional
supersonic flows) and in the paper by Sipcic and myself in Part VI (appendix on wake
generation and trailing edge condition).

It is apparent from the above remarks that this volume is unusual in that equal
emphasis is given to steady as well as unsteady aerodynamics. This clearly reflects
my own preference, since most of my work in the past twenty years has been in the
field of unsteady aerodynamics. However, I believe there are more important reasons
to justify this choice. The first and foremost being that introductory books on recent
developments in the field of unsteady aerodynamics are not available. These develop-
ments may be of interest even to steady-state aerodynamicists: in my experience,
the effort required to understand unsteady aerodynamics yields a deeper insight into
the steady-state problem as well; furthermore, methodology originally developed for
unsteady aerodynamics has found its way in steady-state computer codes, such as
PANAIR. Moreover, unsteady aerodynamics is not only a fascinating field of research
(eg new development on the interplay between aerodynamics and acoustics of
helicopter rotors), but is also an essential tool in aircraft design, aeroelasticity and
helicopters in forward flights are only two examples of practical applications. I hope
that this volume will help steady-state aerodynamicists appreciate the complexities
of unsteady aerodynamics and stimulate renewed interest in this field.

I wish to express my appreciation to Professor Giovanni Lanzara, Director of ICTS,
for providing me with the unique opportunity to coordinate the course (in the un-
forgettable setting of Amalfi) and to prepare this volume, and to Dr Paolo Fadda for
the superb organization of the course and the contjnuous support that I received
in completing this volume. I also want to thank the speakers for.their enthusiastic
response, their outstanding presentations, and their equally outstanding manuscripts.
My thanks also go to all people who helped me in preparing this volume, in particular
Laura Stockar for her extreme patience in transforming into legible material the
manuscripts that I wrote, and to Dr. Carlos A. Brebbia and his associates at
Computational Mechanics International for their superb work in producing this volume.

Finally I want to thank my daughters Federica and Francesca for their patience
during the preparation of the manuscripts and, above all, my wife Nancy for her
understanding and support which were essential for the completion of this volume.

Luigi Morino Boston, 1985
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FOUNDATION OF POTENTIAL FLOWS

by

L. MORINO
Boston University
Boston, Massachusetts, U.S.A.



ABSTRACT

The fundamental equations governing the motion of perfect fluid are
presented in this section. Specifically, continuity equation, Euler equa-
tions, and entropy equation are obtained starting from the fundamental
principles of conservation of mass, momentum and energy, along with

Gibbs thermodynamics with the restriction that fluid is perfect (that is,
inviscid and adiabatic). These equations are used to prove that, if a flow
field is initially isentropic and irrotational and no shocks arise, then the
field remains irrotational, except for the points emanating from the trailing
edge (wake). The equation for the velocity potentional is then obtained.



FOUNDATIONS OF INVISCID FLOWS

THE FUNDAMENTAL EQUATIONS governing the motion of perfect fluid
are presented in this section. Specifically, continuity equation,
Euler equations, and entropy equation are obtained starting from
the fundamental principles of conservation of mass, momentum and
energy, along with Gibbs thermodynamics with the restriction that
the fluid is perfect (that is, inviscid and adiabatic).
MATHEMATICAL PRELIMINARIES-The V (del) symbol
;- ad )

V=—— i1 +— i +— 1 1.1
axlll alez axals ( )

will be used extensively in this paper. Note that

grad F = VF (1.2)
divw = Vew (1.3)
curl W = Vxw (1.4)

Also, four important integral theorems will be used. Stokes
theorem states that if o is an arbitrary surface with contour C
(covered in counter—clockwise fashion with respect to the normal
n), then for any differentiable vector field w

vUcurl w.n do =¢ WedxX (1.5)

o [
Gauss or divergence theorem states that if o is the boundary of V
and T is the outer normal of o, then for any differentiable

vector field w
Jjjdiv w dv = @W-E do (1.6)
Vv

o
In particular, if w = ka

([ ar - Gfeay oo G
axk
v o

This yields the gradient theorem

J’JJVF dv =@Fn‘ do (1.8)

v o
BASIC ASSUMPTIONS-Let Vy be a material volume, that is, a

volume composed of the same material particles at all times. The

conservation principles for mass, momentum and energy are

Mass
d
—_ J]J p dVv =0 (1.9)
dt -
Momentum o
d = _
d_t jy[ pv dV = J.J'J‘ pf dV + @ tde (1.10)
VM v g

M



Energy

d v’ -

_t.ij p(2— + e)dv =”‘pr-7 dav +®f-? do —@q do (1.11)
VM V‘. [6] [o]

In the above equations, o is the boundary of VM' p is the
density, v is the velocity, f is the force per unit mass, t is
the force per unit surface, e is the internal energy, and q is
the heat flux per unit surface.
The assumption of perfect (that is, inviscid and adiabatic)
fluid implies
t=-pn (inviscid) (1.12)

q=20 (adiabatic) (1.13)

TIME DERIVATIVE OF VOLUME INTEGRAL-In order to evaluate the

time derivative of a volume integral, it is convenient to

introduce material (convected) coordinates, E%, These

coordinates move with a material point (i.e., &% = const

corresponds to the same material point at all times). The motion
of a particle identified by the coordinates &% is given by

x = x(&%,¢t) (1.14)

Therefore, if Vo, is the (time independent) volume of the space &¢
corresponding to the volume Vy,

d S
. IJ:[] F dv d.—tj‘_[,{ FJ d& dg¢ dg
M

=.f[[ (FT) d§ d§ d§ (1.15)

H (o 7+ F 2D agtag’ar’

v
where M
DF d
— = — F(x(&%,t),t) =
Py prs (x (& ), t)
OF  OF F F 1.16)
= — — + — Vv + — Vv .
at  9xy ©  9xs o dxs
= (— + V.V)F

is the material (substantial) derivative and

9(x1,x2,x3)
J = — (1.17)

acet,e,e’)

is the Jacobian of the transformation x(£2), It may be shown (see
Serrin®, p.13i ) that



21 =7J V.v
= - v (1.18)
Hence
——-[[IFdV J]- (—— + V.VF + F V-¥)J d& d§ d§
Jj (— + V+(F¥)) dv (1.19)
ff—dV+®FV.Edc

a

which gives the familiar expression of the derivative of a volume
integral in terms of the derivative of the integrand and the flux
through the boundary.

THE CONTINUITY EQUATION-The continuity equation is obtained
from the principle of conservation of mass, Eq. 1.9:

d 1..2_.3
o Pdv=ajjjpld§d§d§
VM Vo (1.20)
= _UJ‘ b (pY) atae®ag’ =
Dt
0

This implies (because of the arbitrariness of the volume VM)

D
—(pJ) =0 (1.21)
Dt(p )
or, using Eq. 1.18,
Dp =
== & =0 1.22
- p V.v ( )
is€es
dap = =
— + v.Vp + pV.v = 0 (1.23)
at
or
ap
—_ «(pv) =0 1.2
2t V-(pV) (1.24)

REYNOLDS TRANSPORT THEOREM—-Equation 1.11 may be used to
obtain the important Reynolds transport theorem

4 m deV = m d "‘dV (1.25)

The proof is immediate 1f one notes that (using Eq. 1.21) the
above equation may be written as



o _UJ pFY dt*ag’ae’ =J‘J'J‘p ﬁ—f T ag*ag’ae’ (1.26)
Vo Vo

EULER EQUATIONS-Starting from the principle of conservation
of momentum, Eq. 1.10, and using the assumption of inviscid
flows, Eq. 1.12, Reynolds transport theorem, Eq. 1.25 and the
gradient theorem, Eq.1.6, one obtains

J’Hp_dv Uj"f‘w j” VP"V (1.27)

This yields (because Vy is arb1trary) Euler equations
0|
—=f-_-Vp (Euler) (1.28)

CONSERVATION OF MECHANICAL ENERGY-Euler equations may be
used to obtain the theorem of conservation of mechanical energy.
Multiplying the terms of Eq. 1.28 scalarly by Vv and integrating
over the volume Vy yields

mp-'” aw= ”J PE-T &V - Jﬂv;’P-; av (1.29)

Note that, usxng Gauss theotem. Eq. 1.6,

- jJ’j Vp-v dV = —JJ [V-(pV) — pV.Vv] dV =
4 : (1.30)

\VM \/v M

= —@p'ﬁ-v do + ij pV.v dv
"o Y

M
Hence, using Reynolds transport theorem, Eq. 1.25, and Eq. 1.12,
one obtains the theorem of conservation of mechanical emergy:

d_t Uf %pv’dv B J,U pE:V av + @I’V do + ”‘J‘p V. av (1.31)

M
CONSERVATION OF THERMODYNAMIC ENERGY-Comparing the principle
of conservation of emnergy, Eq. 1.11, with the theorem of
conservation of mechanical energy, Eq. 1.31, and using Reynolds
transport theorem, Eq. 1.25, one obtains the theorem of
conservation of thermodynamic energy:

jﬂ H,[\’}\iv'v av + @qua (1.32)

Using the assumptxon of adiabatic flows, Eq. 1.13, continuity
equation, Eq. 1.22, and the arbitrariness of the volume Vy, one
obtains

L V¥ = 2apop = . (1.33)
B‘P .V_szm_ pﬁ(s) .



