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Abstract

In this paper we introduce the notion of a geometric associative r-matrix
attached to a genus one fibration with a section and irreducible fibres. It allows
us to study degenerations of solutions of the classical Yang—Baxter equation using
the approach of Polishchuk. We also calculate certain solutions of the classical,
quantum and associative Yang—-Baxter equations obtained from moduli spaces of
(semi-)stable vector bundles on Weierstrafl cubic curves.
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Introduction

There are many indications (for example from homological mirror symmetry)
that the formalism of derived categories provides a compact way to formulate and
solve complicated non-linear analytical problems. However, one would like to have
more concrete examples, in which one can follow the full path starting from a
categorical set-up and ending with an analytical output. In this article we study
the interplay between the theory of the associative, classical and quantum Yang—
Baxter equations and properties of vector bundles on projective curves of arithmetic
genus one, following the approach of Polishchuk [57].

Let g be the Lie algebra sl,,(C) and A = U(g) its universal enveloping algebra.
The classical Yang-Baxter equation (CYBE) is

[r12(2), v (@ + y)] + [P (2 + y), v ()] + [r2(2), 7 (y)] = 0,

where r(2) is the germ of a meromorphic function of one variable in a neighbourhood
of 0 taking values in g ® g. The upper indices in this equation indicate various
embeddings of g ® g into A ® A ® A. For example, the function r'? is defined as

3. C 5HgRg ™ AR AR A,
where 713(r @ y) = 2 ® 1 ®@y. Two other maps r'? and r?* have a similar meaning.

In the physical literature, solutions of (CYBE) are frequently called r-matrices.
They play an important role in mathematical physics, representation theory, inte-
grable systems and statistical mechanics.

By a famous result of Belavin and Drinfeld [8], there exist exactly three types
of non-degenerate solutions of the classical Yang-Baxter equation: elliptic (two-
periodic), trigonometric (one-periodic) and rational. This trichotomy corresponds
to three models in statistical mechanics: XYZ (elliptic), XXZ (trigonometric) and
XXX (rational), see [7].

Belavin and Drinfeld have also obtained a complete classification of elliptic
and trigonometric solutions, see [8, Proposition 5.1 and Theorem 6.1]. A certain
classification of rational solutions was given by Stolin [63, Theorem 1.1].

This article is devoted to a study of degenerations of elliptic r-matrices into
trigonometric and then into rational ones. We hope that this sort of questions will
be interesting from the point of view of applications in mathematical physics. In
order to attack this problem we use a construction of Polishchuk [57]. After certain
modifications of his original presentation, the core of this method can be described
as follows.

Let E be a Weierstra cubic curve, E C E the open subset of smooth points,

M = Mgl‘d) the moduli space of stable bundles of rank n and degree d, assumed
to be coprime. Let P = P(n,d) € VB(E x M) be a universal family of the moduli

1



2 INTRODUCTION

functor M(E"‘d). For a point v € M we denote by V = P] £y, the corresponding
vector bundle on E. Consider the following data:

e two distinct points vy, vy € ]&f in the moduli space;

e two distinct points 1,32 € E such that Vy(y2) 2 Va(y1).
Using Serre Duality, the triple Massey product

Homg(V1,Cy, ) ® Exty(Cy,, Vo) ® Homg(Vs, Cy,) — Homp(V1,Cy,),

induces a linear morphism

r;)l“';;"l : Homg(Vy,Cy,) ® Homg(V,,Cy,) — Hompg(V2,C,,) @ Homg(V1,Cy,)

which satisfies the so-called associative Yang-Bazter equation (AYBE)
Va2 0 v v\ 13y w23 0y v, 12 Vi W\ 13 v,v\23
(ryl Y2 ) ( Y1,Y3 ) (ryz-ya ) ( Y1,y2 ) + (Tyl-ya ) (Tyz.ys ) =0
viewed as a map

Homg(V1,Cy,) ® Homg(V2,C,y,) ® Homg(V3,C,,)

l

Hompg(V,,Cy,) ® Homg(Vs, Cy,) ® Homg(V1,C,y,).

This morphism can be rewritten as the germ of a tensor-valued meromorphic
function in four variables, defined in a neighbourhood of a smooth point o of the
moduli space M x M x E x E (the choice of o will be explained in Corollary 3.2.13)

r(V1, Vas g1, 2) : (C*xC%,0) = (M xM)x(EXE),0) — Maty,xn(C)®Mat, x,(C).

Since the complex manifold Mgl‘d) is a homogeneous space over the algebraic
group J = PicO(E), it turns out that

r(vi,v2; 91, y2) ~ r(v1 — v2; 91, ¥2) = r(v; Y1, Y2),

with respect to a certain equivalence relation on the set of solutions. We show that
this equivalence relation corresponds to a change of a trivialisation of the universal
family P.

Let e be the neutral element of .J. Polishchuk has shown [57, Lemma 1.2] that
the function of two variables

F(y1,2) = lim (pr @ pr)r(v; g1, 42) € 51 (C) ® 81 (C)

is a non-degenerate unitary solution of the classical Yang-Baxter equation. More-
over, under certain restrictions (which are always fulfilled at least for elliptic curves
and Kodaira cycles of projective lines), for any fixed value g # e from a small
neighbourhood U, C J of e, the tensor-valued function

r: ({9} x E x E, €) — Mat, ., (C) ® Mat, «»(C)

satisfies the quantum Yang-Baxter equation, see [58, Theorem 1.4]. Hence, this
approach gives an explicit method to quantise some known solutions of the classical
Yang-Baxter equation.

Moreover, as was pointed out by Kirillov [39], a solution r(v;y;,y2) of the
associative Yang-Baxter equation defines an interesting family of pairwise com-
muting first order differential operators, generalising Dunkl operators studied by
Buchstaber, Felder and Veselov [14], see Proposition 1.2.6.
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The aim of our article is to study a relative version of Polishchuk’s construction.
Although most of the results can be generalised to the case of arbitrary reduced
projective curves of arithmetic genus one having trivial dualising sheaf, in this
article we shall concentrate mainly on the case of irreducible curves.

Let E be a Weierstrall cubic curve, i.e. a plane projective curve given by the
equation zy? = 4a® — goxz? — g323. It is singular if any only if A := g3 —27¢% = 0.

Unless g2 = g3 = 0, the singularity is a node, whereas for g, = g3 = 0 it is a cusp.

A connection between the theory of vector bundles on cubic curves and exactly
solvable models of mathematical physics was observed a long time ago, see for ex-
ample [46, Chapter 13] and [49] for a link with KdV equation, [23] for applications
to integrable systems and [10] for an interplay with Calogero-Moser systems. In
particular, the correspondence

elliptic elliptic
trigonometric || nodal
rational cuspidal

was discovered at the very beginning of the algebraic theory of completely integrable
systems.

In this article we follow another strategy. Instead of looking at each curve of
arithmetic genus one individually, we consider the relative case, so that all solutions
will be considered as specialisations of one universal solution. Our main result can
be stated as follows.

THEOREM. Let E — T be a genus one fibration with a section having reduced
and irreducible fibres, M = MI(E"/‘;) the moduli space of relatively stable vector bun-
dles of rank n and degree d. We construct a meromorphic function

r: (M xp XM X1 E X1 E,0) — Mat, x»(C) ® Mat,,»,(C)

in a neighbourhood of a smooth point o of M xp x M X1 E x1 E, which satisfies the
associative Yang-Baxter equation for each fized value t € T and (vi,v2,y1,Y2) €
((ME, x Mg,) x (E¢ x Et),o). Moreover, ri(vi,v2,y1,Y2) is analytic outside the
hypersurfaces vi = vy and y, = y2, and it is compatible with base change of the
gwen family E — T. The corresponding solution 7(y) of the classical Yang—Baxter
equation 1s

o elliptic if Ey is smooth;

e trigonometric if E; is nodal;

e rational iof Ey is cuspidal.
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We also carry out explicit calculations for vector bundles of rank two and degree
one on irreducible Weierstrafl cubic curves. In the case of an elliptic curve F = E;
the corresponding solution is

Do — 01(0|7) [61(y + v|7) M
Tel](U-y) = 01(y|7_) 0, (’b‘lT) 1®1+ 92(1)[7') h® h+

04(y + v|7)
93(1)17_) oo+ —04(’UIT)- & 7] )

where 1 =€) + €22, h = €11 — €22,0 = i(eg; — €12) and v = ez + €12.
In the case of a nodal cubic curve we obtain
sin(y + v)

1
—————"(e11 @ e11 + €22 D e22) + —— (€11 ® €22 + €22 D eq1)+
sin(y) sin(v)

sin(v)

(e12 ® €21 + €21 ® €12) + sin(y + v)ea; @ ez

Ttrg(v; y) =

1
- sin(y)

and in the case of a cuspidal cubic curve, the associative r-matrix is

1
Trat (Vi Y1, Y2) = ;]l ® 1+ (e11 @ €11 + €22 ® €22 + €12 ® €21 + €21 @ €12)+
1

+ (v —y1)ea ®h+ (v+y2)h @ ez — v(v — y1)(v + y2)e21 ® ez1.

Our results imply that up to a gauge transformation the trigonometric and rational
solutions 7 (v;y) and 7rae(v; Y1, y2) are degenerations of rey(v;y), which seems to
be difficult to show by a direct computation.

Moreover, for generic v the tensors rey(v; y), rurg(v;y) and reag (v y1, y2) satisfy
the quantum Yang-Baxter equation and are quantisations of the following classical
r-matrices:

e Elliptic solution found and studied by Baxter, Belavin and Sklyanin:

cn 1+ dn 1—dn
Ten(y) = snéz; h®h+ Sn(y§y) (612®€21+€21®€12)+—Ty§y)(612®€12+621®621)~

e Trigonometric solution of Cherednik:

_ 1 1 .
Tug(y) = 3 cot(y)h ® h + m(eu ® ez1 + €21 ® e12) + sin(y)ez; ® ea;.

e Rational solution

_ 1/1

Trat(y) = Z(ih ®h+e2@e +e21® €1~z> +y(e21 ®h+h®@ea1) — y’ea @ ean,
which is gauge equivalent to a solution found by Stolin [63].

This paper is organised as follows. In Chapter 1 we collect some results about
the associative Yang—Baxter equation and its relations with Dunkl operators as well
as with the classical and quantum Yang—Baxter equations.

Chapter 2 consists of two sections. Section 2.1 gives a short introduction into
a construction of Polishchuk which provides a method to obtain solutions of Yang—
Baxter equations from triple Massey products in a derived category. In order to
be able to calculate solutions explicitly, this construction has to be translated into



INTRODUCTION

ot

another language, involving residue maps. In Section 2.2 we explain the correspond-
ing result of Polishchuk whereby we provide some details which are only implicit
in [57]. The understanding of these details is crucial for the study of the relative
case, which is carried out in Chapter 3.

Theorem 3.2.13 is the main result of this article. It states that for any genus
one fibration £ — T satisfying certain restrictions and any pair of coprime integers
0 < d < r one can attach a family of solutions of the associative Yang-Baxter
equation 7¢(vy, v2; y1. y2) depending analytically on the parameter of the basis and
functorial with respect to the base change. This solutions actually depend on the
choice of a trivialisation £ of the universal family P(n,d) of stable vector bundles
of rank n and degree d. However, in Proposition 3.2.12 we show that the choice of
another trivialisation ¢ leads to a gauge equivalent solution 7¢(vy,va; Y1, y2)

In Section 3.3 we prove that in the case of a Weierstrafl cubic curve F there
exists a trivialisation £ of the universal family P(n,d) such that the corresponding
solution r&(vy, va;y1,¥y2) is invariant under simultaneous shifts

v —= v +v, v vy .

In other words, the solution r¢(vy,va;y1,92), also called the geometric associative
r-matriz, depends on the difference vy — vy of the first pair of spectral parameters
only. Hence, the obtained solution 7¢(v;y;,y2) also satisfies the quantum Yang-
Baxter equation and defines an interesting quantum integrable system. The key
point of the proof is to show equivariance of triple Massey products with respect
to the action of the Jacobian J on the moduli space Jwg‘d).

Since it is indispensable for carrying out explicit calculations of r-matrices, in
the following chapters we elaborate foundations of the theory of vector bundles on
genus one curves. In Chapter 4 we recall some classical results about holomorphic
vector bundles on a smooth elliptic curve. Using the methods described before,
we explicitly compute the solution of the associative Yang—Baxter equation and
the classical r-matrix corresponding to a universal family of stable vector bundles
of rank two and degree one. These solutions were obtained by Polishchuk in [57,
Section 2] using homological mirror symmetry and formulae for higher products
in the Fukaya category of an elliptic curve. Our direct computation, however, is
independent of homological mirror symmetry. We are lead directly to express the
resulting associative r-matrix in terms of Jacobi’s theta-functions and the corre-
sponding classical r-matrix in terms of the elliptic functions sn(z), cn(z) and dn(z).

Chapter 5 is devoted to similar calculations for nodal and cuspidal Weierstraf3
curves. Our computations are based on the description of vector bundles on sin-
gular genus one curves in terms of so-called matrix problems, which was given by
Drozd and Greuel [25] and the first-named author [15]. We show that their descrip-
tion of canonical forms of matrix problems corresponds precisely to a very explicit
presentation of universal families of stable vector bundles. We explicitly compute
geometric r-matrices coming from universal families of stable vector bundles of rank
two and degree one on a nodal and a cuspidal cubic curves and the r-matrix coming
from the universal family of semi-stable vector bundles of rank two and degree zero
on a nodal cubic curve.

We conclude with a brief summary of the analytical results in Chapter 6.
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NoTATION. Throughout this paper we work in the category of analytic spaces
over the field of complex numbers C, see [55]. However, most of the results remain
valid in the category of algebraic varieties over an algebraically closed field k of
characteristic zero.

If V,W are two complex vector spaces, Lin(V, W) denotes the vector space of
complex linear maps from V to W.

For an additive category C, a pair of objects X,Y € C and two isomorphisms
f:X — X' and g : Y — Y’ we denote by cnj(f,g) the morphism of abelian
groups Homc(X,Y) — Hom¢(X’,Y’) mapping a morphism h to the composition
goho f71.

If X is a complex projective variety, we denote by Coh(X) the category of
coherent O y-modules and by VB(X) its full subcategory of locally free sheaves
(holomorphic vector bundles). The torsion sheaf of length one, supported at a
closed point y € X, is always denoted by C,. By D°,(X) we denote the full
subcategory of the derived category of the abelian category of all Ox-modules
whose objects are those complexes which have bounded and coherent cohomology.
The notation Perf(X) is used for the full subcategory of DP,(X) whose objects
are isomorphic to bounded complexes of locally free sheaves. For a morphism of
reduced complex spaces E —+ T we denote by E the regular locus of p.

A Weierstrafl curve is a plane cubic curve given in homogeneous coordinates
by an equation zy? = 423 — gox2? — g323, where g1, g2 € C. Such a curve is always
irreducible. It is a smooth elliptic curve if and only if A(gs,g3) = g3 — 2795 # 0.
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CHAPTER 1

Yang-Baxter Equations

1.1. The classical Yang—Baxter equation

In this section we recall some standard results about Yang—Baxter equations.
Let g be a simple complex Lie algebra and ( , ) :gx g — C the Killing form.
Throughout this paper g = sl,,(C). The classical Yang-Baxter equation (CYBE) is
(1.1)

(P2 (1, 42), 72 (y2, y3)] + [P (1, 92), 72 (w1, w3)] + (2 (91, 93), 7°° (y2,93)] = 0,

where 7(z,y) is the germ of a meromorphic function of two complex variables in a
neighbourhood of 0, taking values in g ® g. A solution of (1.1) is called unitary if

r2(y1,y2) = —r? (y2, 1)

and non-degenerate if r(y1,y2) € g®@ g = g* ® g = End(g) is invertible for generic
(y1,y2). On the set of solutions of (1.1) there exists a natural action of the group
of holomorphic function germs ¢ : (C,0) — Aut(g) given by the rule

(1.2) r(y1,42) = (6(y1) © d(y2))7r(y1, y2)-

PROPOSITION 1.1.1 (see [9]). Modulo the equivalence relation (1.2) any non-
degenerate unitary solution of the equation (1.1) is equivalent to a solution r(u,v) =
r(u — v) depending on the difference (or the quotient) of spectral parameters only.

This means that equation (1.1) is essentially equivalent to the equation
(1.3) [r2(@), 7 (@ + y)] + [P (2 + y), v ()] + [P (@), 7 (y)] = 0.

Although the classical Yang—Baxter equation with one spectral parameter is better
adapted for applications in mathematical physics, it seems that from a geometric
point of view equation (1.1) is more natural.

Let m = dim(g), e1,€2,...,€, be a basis of g and e!,e?,...,e™ be the dual
basis of g with respect to the Killing form ( , ). Then Q=" e'®e; €Eg®g
is independent of the choice of a basis and is called the Casimir element.

THEOREM 1.1.2 (see Proposition 2.1 and Proposition 4.1 in [8]). Let r(y) be a
non-constant non-degenerate solution of (1.3). Then the tensor r(y)
e has a simple pole at 0 and resy—o(r(y)) = af) for some o € C*;
e is automatically unitary, i.e. 7'2(y) = —r?}(—y).

As it was already mentioned in the introduction, there is the following classifi-
cation of non-degenerate solutions of (CYBE) due to Belavin and Drinfeld.

THEOREM 1.1.3 (see Proposition 4.5 and Proposition 4.7 in [8]). There are
three types of non-degenerate solutions of the classical Yang—Baxter equation (1.3):
elliptic, trigonometric and rational.
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Let us now consider some examples. Fix the following basis

(10 (01 (00
=\lo =1 ) 2 {oo0o) 2710

1
of the Lie algebra g = sly(C). Note that 2 = §h R h + e12 ® ea1 + €21 ® ey is the
Casimir element of sly(C).

e Historically, the first solution ever found was the rational solution of Yang

1/1
Prat(Y) = ; (Eh @ h+e12 ® e +en ®€12> .

e A few years later, Baxter discovered the trigonometric solution

1 1
T‘trg(y) - 5 COt(y)h ® h + m(elz ®X ez +e21 @ 612).
e The following solution of elliptic type was found and studied by Baxter, Belavin
and Sklyanin:

en(y) 1+ dn(y) 1 —dn(y)
Te = h®h+ e12®es1 +e21®e13)+———=(e12®e12+e21 Rea ),
1(y) sn(y) () (e12®e21 €21 ®e12) - (e12®e12+ea1 ®ear)

where cn(y), sn(y) and dn(y) are doubly periodic meromorphic functions on C with
periods 2 and 27. These functions also satisfy identities of the form f(y+1) = ¢ f(y)
and f(y+7) =ef(y) with e = £1.

At first glance, all these solutions seem to be completely different. However, it is
easy to see that

Jim rus () = e
hence the solution of Yang is a degeneration of Baxter’s solution. Moreover, there
exist degenerations dn(y) — 1, cn(y) — cos(y) and sn(y) — sin(y), when the
imaginary period 7 tends to infinity, see for example [43, Section 2.6]. Hence, both
solutions of Baxter and Yang are degenerations of the elliptic solution. However,
as we shall see later, the theory of degenerations of r-matrices is more complicated
as it might look like at first sight.

1.2. The associative Yang—Baxter equation

In this article we deal with a new type of Yang—Baxter equation, called asso-
ciative Yang—Bazter equation (AYBE). It appeared for the first time in a paper of
Fomin and Kirillov [28]. Later, it was studied by Aguiar [1] in the framework of
the theory of infinitesimal Hopf algebras. The following version of the associative
Yang-Baxter equation with spectral parameters is due to Polishchuk [57]. A special
case of this equation was also considered by Odesski and Sokolov [54].

DEFINITION 1.2.1. An associative r-matrix is the germ of a meromorphic func-
tion in four variables

r: (C4 0) —_— Matan(C) &® Matnxn((c)

(vi,v2;91,92)°

holomorphic on (C4 \ V((y1 — y2)(v1 — v2)), 0) and satisfying the equation
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(1.4)  7(vi, 02391, ¥2) 2r(v1, v33 Y2, 3) % = r(v1, vs 91, y3) Pr(vs, vas yr, 12) P+
+7'(’U2, U35 Y2, y3)23r(vla V2;Y1, y3)13‘
Such a matrix is called unitary if

(1.5) r(v1,v25 1, 92) " = —r(va, v1; 02, 91) "

On the set of solutions of (1.4) there exists a natural equivalence relation.

DEFINITION 1.2.2 (see Section 1.2 in [57]). Let ¢ : (C2,0) — GL,(C) be the
germ of a holomorphic function and r(vy,v2; y1,y2) be a solution of (AYBE) then

' (v1, 02391, y2) = (B(v1s 1) ® G(v23y2))r(ve, v2; Y1, y2) (G(v2sy1) ™! @ dlvrs y2) ™Y)

is again a solution of (1.4). Two such tensors r and r’ are called gauge equivalent.
Note that if the matrix »r is unitary then r’ is unitary, too.

EXAMPLE 1.2.3. Let r(v1,v2;y1,%2) € Mat,xn(C) ® Mat, «»(C) be a solution
of (1.4). If ¢ € C, the gauge transformation ¢ = exp(cvy) - 1 : (C?,0) — GL,(C)
shows that exp(c(vz — v1)(y2 — y1))7(v1, v2; y1, ¥2) is a solution of (AYBE), gauge
equivalent to r(vy, va; Y1, y2).

LEMMA 1.2.4. Let r(v1,v2;y1,Yy2) be a unitary solution of the associative Yang—
Baxter equation (1.4). Then r also satisfies the “dual” equation

(1.6) T(U27U3§y2ay3)23r(v1av3§y17y2)12=T(UlsU2;yl»y2)12r(v2yv3§y17y3)13+
+r(vi, v3; 91, y3) 1 (v2, v15 Y2, y3

PROOF. Let 7 be the linear automorphism of Mat,, ., (C) ® Mat,, «,,(C) defined
by 7(a ®b) = b® a. Applying the operator 7 ® 1 to the equation (1.4), we obtain:

)23.

r(v1,v2; 91, Y2) 2 1 (V1,033 92, y3) P = (01, 03591, ¥3) P (va, v2; 1, 92) !
+7 (2, U35 Y2, y3) Pr(v1, v25 1, y3) .
Using the unitarity condition (1.5) we get:
—T(Uz,vl;yz’yl)lzr(vhvz;yz,ys)w = _T(UlaUB;ylayS)23T(v21U3§y27y1)12
+7(va, v3; Y2, y3) r(v1, va; y1, y3) *.

After the change of variables vy <> vy, v3 <> vz and y; <> y2,y3 > y3, we obtain
the equation (1.6). O

Assume a unitary solution 7(vy,v2;y1,y2) of the associative Yang—Baxter equation
(1.4) depends on the difference v = v; — vy of the first pair of parameters only. For
the sake of simplicity, we shall use the notation r(vi,ve; y1,y2) = 7(vi —v2; Y1, ¥2) =
r(v;y1,y2). Then the equation (1.4) can be rewritten as

(1.7) (s Y1, y2) 2 (u + vs y2, 43) 22 = r(u 4 v 91, ¥3) Br(—v; 1, 12) 2

+r(v; Y2, y3) P r(ui v, ys) .
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REMARK 1.2.5. It will be shown in Theorem 3.3.5 that any solution r of the
associative Yang-Baxter equation (1.4) obtained from a universal family of stable
vector bundles on an irreducible genus one curve, is gauge equivalent to a solution
r’ depending on the difference v; — v2 only.

Let A be the algebra of germs of meromorphic functions f : (Cfvl_v?; I 0) —C
holomorphic on (((34 \ V((v1 — v2) (w1 — wy)), 0). A solution of the equation (1.7)
defines an element

r € Mat, xn(A) ®4 Mat,, x,(A) = A ¢ Mat, 1, (C) ®¢ Mat, x,(C).

In a similar way, for any integer m > 3 denote by B the algebra of germs of

meromorphic functions f : ((C(zz ..... T setm)? 0) — C which are holomorphic on

(C*™\ D,0), where D is the divisor

D=V | [[@i -2 —v)
i#]
Next, for any pair of indices 1 <7 # j < m we have
e aring homomorphism ¥*/ : A — B which sends a function f (v, vo; wy, ws)
to f(@i, ;5 ¥i, ¥5); -
e a ring homomorphism k% : B — B defined as
f(‘..,zi,...,zj,...;g) Hf(...,rj,...,zi,...;y_);

e a morphism g;; : Mat,«,(C)®? — Mat, x,,(C)®™ mapping a simple
tensor a®@bto1®...12a1®...1b81®---® 1, where a and b
belong to the i-th and j-th components respectively.

In this notation, consider
‘I/ij = wl] (024 Qij - A ®c Matnxn((C)@z — B Qc Mat"_x,,((C)®"‘.

For example W'3(f(v1,vo;w1,w2) ® a®@b) = f(21,23;91,¥3) ®a® 1 @ b. Next, we
set rJ = Qi (r) € B®c Matnxn(C)®m and

KY =k ®1 : B®cMatyxn(C)®™ — B ®c Mat, x,(C)®™.
Consider the linear operator
7 =719 0 K'Y : B®c Matyxn(C)®™ — B Q¢ Mat,, ., (C)®™,

which is the composition of K% and the multiplication with the element /. For
any 1 < i < m consider the differential operator

0

ox;

Next, for any x € C let

0; = ®1 : B®c Mat,xn(C)®™ — B ®c Mat,, x»(C)®™.

0; := KO + 3 7 : B®c Matyxn(C)®™ — B ®c Maty, ., (C)®™
J#
be the Dunkl operator of level k. The following result was explained to the first-
named author by Anatoly Kirillov, see also [39].
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PROPOSITION 1.2.6. Let r(v;y1,¥2) € Matyxn(A) ®4 Mat,xn(A) be a unitary
solution of the equation (1.7), k € C be a scalar and 0; be the Dunkl operator of
level k defined above. Then for all 1 < 1i,j < m we have [Hi,Oj] =0.

PRrOOF. First note that
0 0
(% + %)r(mi — 5%, Y;) =0,
i j
which implies the equality [& +9;,79 ] = 0. Next, the Yang—Baxter relations (1.4)
and (1.6) yield that for any triple of mutually different indices 1 < < j <k <m
we have
FIFik = pikjik 4 FikED and  FIRFT = FRER g PO RR

From the unitarity of r it follows that 7/ = —7% for all 1 < i # j < m. Finally,
the following two equalities are obvious:

[7,7#] =0, [6;7]=0
where 1 < 1,7, k,l < m are mutually distinct. Combining these equalities together,

we obtain the claim. O

REMARK 1.2.7. The above proposition means that to any unitary solution of
the associative Yang—-Baxter equation (1.7) one can attach a very interesting second
order differential operator

H=02+05+---+602: B®cMat,xn(C)®™ — B ®c Mat,,»,(C)®™.

These operators are “matrix versions” of the Hamiltonians considered in the work
of Buchstaber, Felder and Veselov [14].

Another motivation to study solutions of the equation (1.7) is provided by their
close connection with the theory of the classical Yang-Baxter equation.

LEMMA 1.2.8 (see Lemma 1.2 in [57]). Let r(v;y1,y2) be a unitary solution
of the associative Yang-Baxter equation (1.7) and pr : Mat,x,(C) — sl,(C) be
the projection along the scalar matrices, i.e. pr(A) = A — ﬂ,fl—) -1. Assume that
(pr ® pr)r(v;y1,y2) has a limit as v — 0. Then

7(y1,92) = lim (pr @ pr)r(v; Y1, y2)
s a unitary solution of the classical Yang—Baxter equation (1.1).

PROOF. First note that (1.6) implies the equality

)12 =r(u; 1, 92)127‘(”? yl,ys)w

)23.

r(v3y2,y3) % r(u+ vy, 2
+7(u 4 vi Y1, ¥3) P r(—u; v, v3
Using the change of variables u — —v and v — u + v, we obtain the relation
r(u+v3y2,y3) P r(us y1, o)
+r(wsy1, 3) Pr(viyz, v
Subtracting this equation from (1.7) we get

=r(—v;y1,52) ?r(u+v;y1, y3)"°
)23.

(1.8)  [r(—vsy1,u2)", r(u+viy1, y3) 3] + [r(us y1, y2) 2, 7 (u + v3 9o, y3) 2]+
+[r(us y1,y3) "3, (v Y2, y3)?] = 0.
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By defirition, the function r(v;y;,y2) is meromorphic, hence we can write its Lau-
rent expansion: 7(v;y1,Y2) = ez Ta(Y1, y2)v®, where 74 (y1, y2) are meromorphic
and 7, = 0 for @ < 0. Since we have assumed that (pr @ pr)r(v;y1,y2) is regular
with respect to v in a neighbourhood of v = 0, we have (pr ® pr)r,(y1,y2) = 0 for
all @« < —1. This implies, if a < —1, that

Ta(Y1,¥2) = Sa(y1,92) @1+ 1 ® ta(y1,y2)

for some matrix-valued functions s, (y1,y2) and t.(y1,y2). Hence,
(pr ® pr ® pr) [rg, rg“] =0

for arbitrary permutations (ij) # (lk), all indices @ < —1 and 3 € Z. The claim of
Lemma 1.2.8 follows by applying pr ® pr @ pr to the equation (1.8) and taking the
limit u,v — 0. O

A natural question is the following. Let r = r(v;y;,y2) be a unitary solution
of the associative Yang-Baxter equation (1.7) satisfying the conditions of Lemma
1.2.8 and s = s(v;y1,y2) be an equivalent solution in the sense of Definition 1.2.2.
Are the corresponding solutions 7(yy, y2) and 5(y1, y2) of the classical Yang—Baxter
equation also gauge equivalent?

The answer on this question is affirmative, if one imposes an additional restric-
tion on the function r. Namely, if the Laurent expansion of r has the form:

1®1
(1.9) r(viyn, y2) = ——— +ro(Y1, 92) + vri (Y, v2) + 0 T2y y2) +
then the following result is true.

PROPOSITION 1.2.9. Letr : (C?v;yhyz),o) — Mat,, «»n(C) ® Mat,, «»(C) be a uni-
tary solution of the associative Yang—Bazxter equation (1.7) having a Laurent expan-
sion of the form (1.9) and 7o(y1,y2) be the corresponding solution of the classical
Yang-Baxter equation. If ¢ : ((C?U:y),o) — GL,(C) is the germ of a holomorphic
function such that
(1.10)

s(v1,v2;91,92) = (P(v1391) @ B(va;42))7(vi Y1, y2) (P(v2; v1) ™' @ Plvr;92) ")
is again a function of v = vy — vy, then we have
1
s(viyr, y2) = ;]1 @ 1+ so(y1,y2) +vs1(y1,y2) + v7s2(y1, y2) + ...
and 7o(y1,y2) and So(y1,y2) are equivalent in the sense of the relation (1.2).

PROOF. We denote v = v; — vy and h = vy. Then v; = v + h and using the
Taylor expansion of ¢ with respect to v, we may rewrite (1.10) in the form

2
(th30) + w8 () + 5 0 i) +... ) @ 00 va)

1®1
= +ro(y1,y2) Fori(yr,y2) + ...

~ (Z si<y1,y2)vi) - (aﬁ(h;w) ® (¢(h;y2) 00 (i) + 0" (i) +)) ,

i€Z



