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EMS Textbooks in Mathematics is a series of books aimed at students or professional mathemati-
cians seeking an introduction into a particular field. The individual volumes are intended not only to
provide relevant techniques, results, and applications, but also to afford insight into the motivations
and ideas behind the theory. Suitably designed exercises help to master the subject and prepare
the reader for the study of more advanced and specialized literature.
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Preface

This book originates from a set of lecture notes for graduate classes I delivered
since 2005, first at the Paul Sabatier University in Toulouse, and then at Purdue
University in West Lafayette. The lecture notes benefited much from the input and
criticism from several students and have been modified and expanded numerous
times before reaching the final form of this book.

My motivation is to present at the graduate level and in a concise but complete
way the most important tools and ideas of the classical theory of continuous time
processes and at the same time introduce the readers to more advanced theories: the
theory of Dirichlet forms, the Malliavin calculus and the Lyons rough paths theory.

Several exercises of various levels are distributed throughout the text in order to
test the understanding of the reader. Results proved in these exercises are sometimes
used in later parts of the text so I really encourage the reader to have a dynamic
approach in his reading and to try to solve the exercises.

I included at the end of each chapter a short section listing references for the
reader wishing to complement his reading or looking for more advanced theories
and topics.

Chapters 1, 2, 5 and 6 are essentially independent from Chapters 3 and 4. 1
often used the materials in Chapters 1, 2, 5 and 6 as a graduate course on stochastic
calculus and Chapters 3 and 4 on their own as a course on Markov processes and
Markov semigroups assuming some of the basic results of Chapter 1. Chapter 7 is
almost entirely independent from the other chapters. It is an introduction to Lyons
rough paths theory which offers a deterministic approach to understand differential
equations driven by very irregular processes including as a special case Brownian
motion.

To conclude, I would like to express my gratitude to the students who pointed
out typos and inaccuracies in various versions of the lecture notes leading to this
book and to my colleague Cheng Ouyang for a detailed reading of an early draft
of the manuscript. Of course, all the remaining typos and mistakes are my own
responsibility and a list of corrections will be kept online on my personal blog.
Finally, I thank Igor Kortchmeski for letting me use his nice picture of a random
stable tree on the cover of the book.

West Lafayette, May 2014 Fabrice Baudoin






Conventions and frequently used notations

Unless specified otherwise, the Borel measures we consider on R” are assumed to
be Radon measures, that is, are finite on compact sets.

I]ez(] [0 +00)

R#*P set of n x p matrices

‘A or A€ complement of the set A

[x] integer part of x

XAY minimum between x and y

(x) [(x) = [ tetdr

A(A, B) set of functions A — B

€(A, B) set of continuous functions A — B

ek (A, B) functions 4 — B, k-times continuously differentiable

€.(A, B) functions A — B, smooth and compactly supported inside A

Co(A, B) continuous functions A — B whose limit at 0o is 0

€%l (4Ax B.C) functions A x B — C which are k-times continuously
differentiable in the first variable and / times in the second

T(A, B) o-field on A (A, B) generated by cylinders

B(A, B) o-field on € (A, B) generated by cylinders

B(A) Borel o-field on A

L}i(A, B) L space of functions A — B for the measure p

L?(F,P) real L7 space of ¥ measurable random variables

A,[0.1] {0=s2 <i? <--- 212 =1}

| Hsd M, It6 integral

[ HgodM; Stratonovitch integral

H(R™) Sobolev space of order s

H(Q) closure of €.(2, C) in H(R")

D Malliavin derivative

é divergence operator

Dk» domain of D¥ in LP(F, P)

| - Il p-var,s,1 p-variation norm on [s, 7]

Il - lloo,ts.1 supremum norm on [s, ]

Cp-vur([s, f]. [Rd)

./jAk [S,l] dxl
Q2([0.T].R¥)

continuous paths [s, 7] — R? with bounded p-variation
Jo<ty <ty <octp <o dX"(11) . A X" (1)

space of p-rough paths
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Introduction

The first stochastic process that has been extensively studied is the Brownian motion,
named in honor of the botanist Robert Brown, who observed and described in
1828 the random movement of particles suspended in a liquid or gas. One of the
first mathematical studies of this process goes back to the mathematician Louis
Bachelier, in 1900, who presented in his thesis [2] a stochastic modelling of the
stock and option markets. But, mainly due to the lack of rigorous foundations of
probability theory at that time, the seminal work of Bachelier has been ignored
for a long time by mathematicians. However, in his 1905 paper, Albert Einstein
brought this stochastic process to the attention of physicists by presenting it as
a way to indirectly confirm the existence of atoms and molecules. The rigorous
mathematical study of stochastic processes really began with the mathematician
Andrei Kolmogorov. His monograph [46] published in Russian in 1933 built up
probability theory in a rigorous way from fundamental axioms in a way comparable
to Euclid’s treatment of geometry. From this axiomatic, Kolmogorov gives a precise
definition of stochastic processes. His point of view stresses the fact that a stochastic
process is nothing else but a random variable valued in a space of functions (or a
space of curves). For instance, if an economist reads a financial newspaper because
he is interested in the prices of barrel of oil for last year, then he will focus on the
curve of these prices. According to Kolmogorov’s point of view, saying that these
prices form a stochastic process is then equivalent to saying that the curve that is
seen is the realization of a random variable defined on a suitable probability space.
This point of view is mathematically quite deep and provides existence results for
stochastic processes as well as pathwise regularity results.

Joseph Doob writes in the introduction to his famous book “Stochastic pro-
cesses” [19]:

A stochastic process is any process running along in time and controlled by
probability laws...more precisely any family of random variables where a random
variable ... is simply a measurable function ...

Doob’s point of view, which is consistent with Kolmogorov’s and built on the
work by Paul Lévy, is nowadays commonly given as a definition of a stochastic
process. Relying on this point of view that emphasizes the role of time, Doob’s
work, developed during the 1940s and the 1950s has quickly become one of the
most powerful tools available to study stochastic processes.

Let us now describe the seminal considerations of Bachelier. Let X, denote the
price at time ¢ of a given asset on a financial market (Bachelier considered a given
quantity of wheat). We will assume that Xy = 0 (otherwise, we work with X, — X}).
The first observation is that the price X, can not be predicted with absolute certainty.
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It seems therefore reasonable to assume that X; is a random variable defined on
some probability space. One of the initial problems of Bachelier was to understand
the distribution of prices at given times, that is, the distribution of the random
variable (X;,..... Xy, ), where ¢y, ..., t, are fixed.
The two following fundamental observations of Bachelier were based on em-
pirical observations:
« If 7 is very small then, in absolute value, the price variation X; 4, — X, is of
order o /T, where o is a positive parameter (nowadays called the volatility
of the asset).

* The expectation of a speculator is always zero' (nowadays, a generalization
of this principle is called the absence of arbitrage).

Next, Bachelier assumes that for every 1 > 0, X, has a density with respect to
the Lebesgue measure, let us say p(r, x). It means that if [x — &, x + ¢] is a small
interval around x, then

P(X, € [x —&.x + €]) =~ 2ep(t, x).

The two above observations imply that for t small,

1 1
pt +1,x) =~ Ep(r.x—rrﬁ) + Ep(t.x + 0 J1).

Indeed, due to the first observation, if the price is x at time ¢ 4 7, it means that at
time 7 the price was equal to x — 0 /T or to x + 0 /T. Accordlng to the second
observation, each of these cases occurs with probability 2 ¢

Now Bachelier assumes that p(t, x) is regular enough and uses the following
approximations coming from a Taylor expansion:

p(t + t,.x) >~ plt, r)-{-r (r X).

p(t.x —o /1) ~ plt. \)-(ff (t.x) + lazra (t,x).

2 8 2
l
p(t.x +o0+/7) =~ pl(t, A)+of (t,x)+2(rzr (r x).
This yields the equation
ap 1, 32 p ([ )
o 20 a2t

This is the so-called heat equation, which is the primary example of a diffusion
equation. Explicit solutions to this equation are obtained using the Fourier trans-
form, and by using the fact that at time 0, p is the Dirac distribution at 0, it is

'Quoted and translated from the French: It seems that the market, the aggregate of speculators, can
believe in neither a market rise nor a market fall, since, for each quoted price, there are as many buyers
as sellers.
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computed that

_ 22
( ) e 202t
plt,x) = ————.
o2t
It means that X, has a Gaussian distribution with mean 0 and variance o2. Let
now 0 < t; < .-+ < t, be fixed times and /;, ..., I, be fixed intervals. In order
to compute P(X,, € I;..... X:, € I,) the next step is to assume that the above

analysis did not depend on the origin of time, or, more precisely, that the best
information available at time ¢ is given by the price X,. This leads to the following
computation:

[P(X[I € I].X,z € [2) 2/ [P(th € 12‘X” :Xl)p([[,xl)dX1

I

:/1 P(Xi—1, +x1 € 2| Xy, = x1) p(t1, x1)dx)

|

2/ plta —t1,x2 — x1) p(ty, x1)dx dxs,
1yx1>

which is easily generalized to
P(X: € h,.... Xy, € 1)

= / pP(tn —th—1,Xn — Xp—1) ... p(t2 — t1, X2 —.’Cl)p(fl.xl)dX]dXQ v d X

IyxexIy

(0.1)

In many regards, the previous computations were not rigorous but heuristic.
One of our first motivations is to provide a rigorous construction of this object X,
on which Bachelier worked and which is called a Brownian motion.

From a rigorous point of view the question is: Does there exist a sequence of
random variables {X;,7 > 0} such that 7 — X, is continuous and such that the
property (0.1) is satisfied? Chapter 1 will give a positive answer to this question.
We will see how to define and construct processes. In particular we will prove the
existence of Brownian motion and then study several of its properties.

Chapter | sets the foundations. It deals with the basic definitions and results that
are required to rigorously deal with stochastic processes. We introduce the relevant
o-fields and prove the fundamental Daniell-Kolmogorov theorem which may be
seen as an infinite-dimensional version of the Carathéodory extension of measure
theorem. It is the basic theorem to prove the existence of a stochastic process.
However, despite its importance and usefulness, the Daniell-Kolmogorov result
relies on the axiom of choice and as such is non-constructive and does not give any
information or insight about the stochastic process that has been proved to exist. The
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Kolmogorov continuity theorem fills one of these gaps and gives a useful criterion
to ensure that we can work with a process whose sample paths are continuous.
Chapter 1 also includes a thorough study of continuous martingales. We focus on
Doob’s theorems: The stopping theorem, the regularization result and the maximal
inequalities. Martingale techniques are essential to study stochastic processes. They
give the tools to handle stopping times which are naturally associated to processes
and provide the inequalities which are the cornerstones of the theory of stochastic
integration which is presented in Chapter 5.

Chapter 2 is devoted to the study of the most important stochastic process: The
Brownian motion. As a consequence of the Daniell-Kolmogorov and Kolmogorov
continuity theorems, we prove the existence of this process and then study some of
its most fundamental properties. From many point of views, Brownian motion can
be seen as the continuous random walk in continuous time. This is made precise
at the end of the chapter where we give an alternative proof of the existence of the
Brownian motion as a limit of suitably rescaled random walks.

Chapter 3 is devoted to the study of Markov processes. Our goal is to empha-
size the role of the theory of semigroups when studying Markov processes. More
precisely, we wish to understand how one can construct a Markov process from a
semigroup and then see what are the properties inherited from the semigroup to the
sample path properties of the process. We will particularly focus on the class of
Feller-Dynkin Markov processes which are a class of Markov processes enjoying
several nice properties, like the existence of regular versions and the strong Markov
property. We finish the chapter with a study of the Lévy processes which form an
important subset of the class of Feller—Dynkin Markov processes.

Chapter 4 can be thought an introduction to the theory of symmetric Dirichlet
forms. As we will see, this theory and the set of tools attached to it belong much
more to functional analysis than to probability theory. The basic problem is the
construction of a Markov semigroup and of a Markov process only from the gener-
ator. More precisely, the question is: Given a diffusion operator L, does L generate
a Markov semigroup P, and if yes, is this semigroup the transition semigroup of
a continuous Markov process? We will answer positively this question in quite
a general framework under the basic assumption that L is elliptic and essentially
self-adjoint with respect to some Borel measure.

Chapter 5 is about stochastic calculus and its applications to the study of Brow-
nian motion. Stochastic calculus is an integral and differential calculus with respect
to Brownian motion or more generally with respect to martingales. It allows one to
give a meaningful sense to integrals with respect to Brownian motion paths and to
define differential equations driven by such paths. It is not a straightforward exten-
sion of the usual calculus because Brownian motion paths are not regular enough,
they are only y-Holder continuous with y < 1/2. The range of applications of
the stochastic calculus is huge and still growing today. We mention in particular
that the applications to mathematical finance have drawn a lot of attention on this



