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Preface

The theory of differential equations in abstract spaces is a fascinating
field with important applications to a number of areas of analysis and
other branches of mathematics. At the present time, there is no single book
that is self-contained and simple enough to appeal to the beginner.
Furthermore, if one desires to give a course so as to expose the student
to this branch of research, such a book becomes handy. This being the
motivation, the aim of our book is, in fact, to introduce the nonspecialist
to this elegant theory and powerful techniques. But for some familiarity
with the elements of functional analysis, all the important results used in
this book are carefully stated in the appendixes so that, for the most part,
no other references are needed. The required theory, from the calculus of
abstract functions and the theory of semigroups of operators, used in
connection with differential equations in Banach spaces is treated in detail.

We have tried to present the fundamental theory of differential equations
in Banach spaces: the first three chapters form an integrated whole
together with, perhaps, Sections 6.1 and 6.3 of Chapter 6. Chapter 4 is
devoted to the study of differential inequalities, mostly, in Hilbert spaces.
The theory developed in Chapter 5 is interesting in itself and could be
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X Preface

read independently. This also applies to Chapter 4. Throughout the book
we give a number of examples and applications to functional and partial
differential equations which help to illustrate the abstract results developed.
In most sections there are several problems with hints directly related to
the material in the text. The notes at the end of each chapter indicate the
sources which have been consulted and those whose ideas are developed.
Several references are also included for further study on the subject. We
hope that the reader who is familiar with the contents of this book will be
fully equipped to contribute to this field as well as read with ease the
current literature.
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Chapter 1

The Calculus of Abstract Functions

1.0. Introduction

In this preliminary chapter the reader will be familiarized with those
parts of the calculus of abstract functions that are essential in the study of
differential equations in Banach and Hilbert spaces. By an abstract function
we mean a function mapping an interval of the real line into a Banach space.
We begin by defining weak and strong continuity and differentiability of
abstract functions and prove a form of the mean value theorem for abstract
functions. Next we develop the Riemann integral for abstract functions and
those properties of this integral which are constantly used in the text. We
then outline abstract integrals of the Lebesgue type (Pettis and Bochner
integrals) and state some basic results. We also sketch the abstract Stieltjes
integral for functions mapping a Banach space into another Banach space.
Finally we treat in some detail the Gateaux and Fréchet differential of
functions mapping a Banach space into another Banach space.
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2 1. The Calculus of Abstract Functions

1.1. Abstract Functions

Let X be a Banach space over the field of real numbers and for any
x € X, let || x| denote the norm of x. Let J be any interval of the real line R.
A function x:J— X is called an abstract function. A function x(¢) is said
to be continuous at the point 1, € J, if lim,,, [|x(1)—x(ty)| =0; if x:J > X
is continuous at each point of J, then we say that x is continuous on J and
we write x € C[J, X].

Abstract functions are in many ways reminiscent of ordinary functions.
For example, a continuous abstract function maps compact sets into
compact sets. Also, a continuous abstract function on a compact set is
uniformly continuous. These statements can be proved in the same way that
we prove them in a metric space.

An abstract function x(z) is said to be

(i) Lipschitz continuous on J with Lipschitz constant X if
x(1) — x()l < K|t,—1,], 1,1, €J;

(if) uniformly Hélder continuous on J with Holder constant K and
exponent f3, if

lx() = x()] < Klty=6,1°, t,1,ed, 0<B<I.

It is clear that Lipschitz continuity implies Holder continuity (with f=1)
but the converse fails as the classical example x(¢) =\/1, K=1, B
shows. The (strong) derivative of x(¢) is defined by

X'(t) = lim [x (¢4 Af) — x(1)]/At
At—0

where the limit is taken in the strong sense, that is,

Jim [Lx(z+h) — x(D)]/h = X' @) = 0.

The foregoing concepts of continuity and differentiability are defined in
the strong sense. The corresponding weak concepts are defined as follows.
Let X* denote the conjugate of X, that is, the space of all bounded linear
functionals on X. An abstract function x(7) is said to be weakly continuous
(weakly differentiable) at t=t, if for every ¢ € X*, the scalar function
¢ [x(#)] is continuous (differentiable) at 7 = 4. In the sequel, limits shall be
understood in the strong sense unless we write w-lim to indicate that we are
taking the weak limit. Also continuity and differentiability shall be under-
stood in the strong sense unless otherwise specified.



1.2. The Mean Value Theorem 3

A family F= {x(¢)} of abstract functions with domain [a, 5] and range
in X is said to be equicontinuous if for every & > 0 there exists a 6 = d(g)
which depends only on ¢ such that for every ¢,,7, € [a, b] with |t, —1,| <,
|x(¢;)—x(t,)| < ¢ for all x e F.

The following form of the Ascoli-Arzela theorem for abstract functions
will be useful. Its proof is a special case of a more general theorem [63].

THeoREM 1.1.1. Let F= {x(¢)} be an equicontinuous family of functions
from [a,b] into X. Let {x,(¢)};>., be a sequence in F such that for each
t, € [a, b] the set {x,(¢t;):n > 1} is relatively compact in X. Then, there is
a subsequence {x,, (#)}5-; which is uniformly convergent on [a, b].

1.2. The Mean Value Theorem

For real-valued functions x(#), the mean value theorem is written as an

equality
x(b) — x(a) = x'(¢)(b—a), a<c<b

There is nothing similar to it as soon as x(z) is a vector-valued function as
one can see from the example x(¢) =(—1+ cost,sint) with a=0 and
b=2m.

For abstract functions the following form of the mean value theorem is
useful.

THEOREM 1.2.1. If x € C[[a,b], X] and ||x'(2)|| < K, a<t < b, then
[x(6) — x@| < K(b—a).

Proof: Choose a functional ¢ € X* such that ||¢|| = 1 and ¢ [x(b)— x(a)]
= ||x(b)—x(a)||. Such a choice of ¢ is possible in view of Appendix III.
Define the real-valued function f(¢) = ¢ [x(¢)]. Then

Lf+h) —f(O1/h = ¢Lx(t+h) — x(0)]/h.

Since ¢ is a continuous linear functional and x'(¢) exists, it follows that
f7(t) exists for a<t<b and f'(t) = ¢[x'(t)]. Hence, the classical mean
value theorem applies to f(¢) and consequently there exists a 7, such that

f(b)—f(a) = f'(t)(b—a), a<7t<bh. (1.2.1)
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In view of (1.2.1) and the choice of ¢ we obtain
[x(®) — x(@@)] = ¢[x(b) — x(@)] = f'(D(b—a) = ¢[x'(1)](b—a)
< IX@I(0—a) < K(b—a)

and the proof is complete.

CoroLLARY 1.2.1. If xeC[[a,b],X] and x'(#)=0, a<t<b, then
x(t) = const.

ProBLEM 1.2.1. Let x € C[[a,b], X] and fe C[[a,b], R]. Assume that
x and f have derivatives on [a,b]— D where D is a denumerable set and
IxOI <f'(@), t € [a,b]— D. Then

Ix(®) — x (@) < f(b) —f(a).

1.3. The Riemann Integral for Abstract Functions

Here we shall define the Riemann integral for abstract functions and
prove the fundamental theorem of calculus. We also define improper
integrals and discuss some properties which will be constantly used in this
book.

Let x:[a,b]—> X be an abstract function. We denote the partition
(a=ty<t;<--<t,=b) together with the points 7; (f;<7;<t;y,, i=
0,1,2,...,n—1) by = and set |n| = max; |t;,, —1;|. We form the Riemann
sum

n—1
Sy = .‘Zo (i1 — 1) x(7)).

If lim S, exists as || — 0 and defines an element 7in X which is independent
of m, then I is called the Riemann integral of the function x () and is denoted
by

I= be(t) dr.

THEOREM 1.3.1. If x € C[[a,b], X], then the Riemann integral [2x(7) dt
exists.

The proof of this theorem makes use of the facts that a continuous
function on a closed, bounded interval is uniformly continuous and that X
is complete. We shall omit the proof.



1.3. The Riemann Integral for Abstract Functions 5

Using the definition of Riemann integral one can easily verify the follow-
ing properties:

b a
@) f x(t)dt = ——f x(1) dt
a b
provided that one of the integrals exist.
b ¢ b
(i) f x(dt = f x(?) dt + f x(t) dt, a<c<b

provided that the integral on the left exists.
(iii) If x(¢) = x, for all ¢ € [a, b], then

b
f Xodt = (b—a)x,.

(iv) If t=w(7) is an increasing continuous function on [a, f] with
a=w(x) and b = w(p), then

b B
f x(t) dt= f x[o@)]o'(x) dr

provided that the integral on the left exists.
(v) If xeC[[a,b], X], then

' be(z) dt{

Indeed, from the definition of the Riemann sum we have

b
< f 1x @) d.

1.1 <

"il(ti+1 _’i)x(ri)]
i=0

n—1
< i;) (e 1 — 1) Ix (@)l

and the result follows by taking limits as |z| -0 and the fact that ||x(?)|
is continuous and hence integrable on [a, b].

THEOREM 1.3.2. If {x,(?)} is a sequence of continuous abstract functions
which converges uniformly to a necessarily continuous, abstract function
x(7) on the interval [a, b], then

b b
lim | x,(?)dt = f x(?) dt.

n—® Ja
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Proof: We have

‘ be,,(t) dt — be(z) dt

which proves the stated result.

b
< f lx,(8) — x(0)| de

< max |x,(f) — x()| (b—a) > 0 as n— oo,
[a,b]

THeorReM 1.3.3. If x e C[[a,b], X], then
t
(d/dt)f x(s)ds = x(v), a<t<hb.

Proof: Set y(t) = [}, x(s)ds. Then, in view of the fact that x(¢) is uniformly
continuous on [a, b], we have

t+h
Ily@+h) —y)]/h— x| = Hh_lﬁ [x(s) — x(0)] ds
< max |[x(s)—x@)| -0 as h—-0
[s—tl<|h|

and the proof is complete.

THEOREM 1.3.4. If the function x: [a, b] — X is continuously differentiable
on (a, b), then for any o, f§ € (a, b) the following formula is true:

fﬂx’(s) ds = x(f) — x(a).
Proof: By Theorem 1.3.3
(d/drt) l:flx’(s) ds — .\'(t):I =0, a<t<p

Hence

ftx’(s) ds — x(t) = const. (1.3.1)

For ¢t = o we find the value of the const = — x () and the result follows by
setting ¢t = fin (1.3.1).

REMARK 1.3.1. In elementary calculus, if x is continuous on [a, b], then

fbx(t) dt = (b—a)x (&)
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for some ¢ € (a, b). This is not true for vector-valued continuous functions
x as we can see from the simple example x(¢) = (cost,sin¢), a=0 and
b=,
Let x: [a, b) » X be an abstract function which is not defined at b < co.
The improper integral (5 x (1) dt is defined as
b—e
lim x(2) dt if b< o

=0+ Ja

and as

M
lim x(2) dt if b=o
Moo Ja
provided that the limit exists.
The following theorem which asserts that integration commutes with
closed operators (in particular, integration commutes with bounded
operators) will be used often.

THeEOREM 1.3.5. Let A on D(A) be a closed operator in the Banach space X
and x € C[[a, b), X] with b < co. Suppose that x(r) € D(A4), Ax(¢) is con-
tinuous on [a, b) and that the improper integrals

b b
f x(t) dt and f Ax (1) dt

exist. Then

b b b
f x(t)dt e D(A) and A f x(t)dt = f Ax(t) dt.

Proof: We shall prove the theorem when b < c0. The case b = oo is left to
the reader. Set ¢ = b—¢ where ¢ > 0 is sufficiently small. For a partition 7 of

[a, b] we have
n—1

Y. x(1)(ti1— 1) € D(A)

i=0

S

and

n—1
In = .;) Ax (Tt — 1) = Afy.
In view of the hypotheses, as » — o0 and || -0

fa— fCX(t) dt  and Af, — f ch(t) dt.
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Since A is a closed operator on D(A), it follows that

f ¥()dteD() and A f (@ df = f “Ax(0) dt.

Setting ¢ =b—n""! in the previous result and using the definition of an
improper integral and the fact that A4 is closed, the desired result follows
upon taking limits as # — c0.

ProBLEM 1.3.1. Define the rectangle
Ry = {(t,x) e Rx X:|t—ty] < a, |lx—x0| < B}.
Let f: R, — X be a function continuous in ¢ for each fixed x
/@l <M, (Lx)eR,
and
1/(t, x0) — (6, x)ll < Klxy—x2l,  (5,x1),(1,x2) € Ry.
Let o, B, K, M be positive constants such that aM < . Then there exists
one and only one (strongly) continuously differentiable function x(7) such
that
dx(v)/dt = f[t,x ()], [t—to] < a and x(ty) = x4

[Hint: Use Theorems 1.3.3 and 1.3.4 and the successive approximations
t
%o® =% %0 =xo+ [ flsx@)ds l—tol <3
to

Justify passing to the limit under the integral sign.]

1.4. Abstract Lebesgue Integrals

Here we shall outline the Bochner and Pettis integrals which are defined
relative to the strong and weak topology, respectively, on a Banach space X.
These integrals are of the Lebesgue type. Let us begin with some notions.

Let (€, S, m) be a measure space. The function x: Q — X is said to be

(1) countably valued in Q if it assumes at most a countable set of values
in X, assuming each value different from zero on a measurable set;

(ii) weakly measurable in Q if the scalar function ¢ [x(cs)] is measur-
able for every ¢ € X'*;



