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Preface

This book contains a comprehensive coverage of mathematical mod-
eling of dynamical systems, analog and digital control principles, controller
design and analysis, commercial microcontrollers/DSPs for control appli-
cations, and implementation of digital control systems using commercial
processors. Theoretical contents of the book are presented as much practi-
cally oriented as possible. Heavy emphasis has been paid on the practical
aspects and implementation of control systems. Digital signal processing is
discussed with an explicit emphasis on realtime control applications. Con-
trol engineering is one of the broadest sub-disciplines of Engineering that
can not be covered in a single book. Too much of content in the book often
makes it difficult for undergraduate students and beginners to figure out
which of the contents the most relevant. This book starts with the basic
fundamentals, modeling of dynamical systems, discusses analog and digital
control theories, and practical implementation using microprocessor-based
systems. The contents cover typical syllabi of a control systems undergrad-
uate course and postgraduate level taught courses and hence a compact yet
comprehensive textbook on control systems for the budding practicing en-
gineers.

Chapter 1 lays foundation for the reader to better understand the
following chapters of the book. This chapter starts with an introduction to
closed-loop control systems in terms of both hardware and system repre-
sentation view points. There is a brief comparison between analog control
and digital control from the points of view of theoretical as well as im-
plementation aspects. Mathematical modeling of dynamical systems has
been included. Essence of transforms in the analysis and design of dynam-
ical systems is highlighted. Mapping between transforms used in analog
and digital domains are also discussed. Concepts of system stability are
discussed in the time domain, analog, and digital domains. Step response
of a closed-loop system is discussed via formative mathematical analyzes.
Time domain design specifications are introduced.

Chapter 2 covers the important classical graphical methods used in
control theory. Root locus method is first discussed with the details of con-
struction, reshaping, and overall design procedure outline. PID controller
is detailed as one of most popular cascade compensators. The importance
of frequency domain analysis and its various aspects have been included.
Relation between time-domain and frequency domain specifications is dis-
cussed. Frequency domain analysis and design is addressed via reshaping
the frequency response curves with special emphasis on Bode plots.

The important topics of state-space methods are covered in Chapter
3. Comparison between state-variable methods and classical methods is
drawn throughout the chapter. The important topic of stability is looked
at through a comprehensive mathematical analysis of the state equations.
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The concepts are further elaborated by the use of some interesting practical
examples. Chapter 3 also covers the concepts of controllability and observ-
ability. State-feedback control and state-feedback with integral control are
discussed together with design examples.

Chapter 4 covers the important issues related to digital control the-
ory. It covers the basic mathematics of discrete systems such as unit
pulse response, difference equations, z-transform, discrete transfer func-
tions, graphical methods and frequency response, and the methods of map-
ping from s to z domains. It compares and contrasts the important topic of
design of digital control systems. This chapter also presents the state-space
methods in the discrete-time domain.

Chapter 5 presents the fundamentals of DSPs with special emphasis
on the commercial processors available for control applications and dis-
cusses general guidelines for selecting DSPs for specific control applica-
tions. Issues of sampling rate, range and round off errors associated with
digital computing are discussed. DSP architectures are compared with
general purpose processors. Different DSPs options are discussed in terms
of arithmetic and hardware architectures, on-chip hardware and software
resources. Their relative importance is discussed giving an in-depth cover-
age on the specific roles that each of the architectural features play in the
implementation of realtime digital control systems. Software and hardware
support tools for commercial DSPs are discussed with examples. Exam-
ples for practical digital implementation of variety of control algorithms
and systems have also been included.

The topics nonlinear systems and intelligent control are discussed in
Chapter 6. This chapter starts with an introduction to nonlinear systems.
The topic of linearization of variety of nonlinear systems is then discussed
giving examples. Lyapunov-based stability analysis methods are discussed
in detail as the most general method for the determination of stability
of nonlinear and/or time-varying systems. Rigid robot systems such as
industrial robot manipulators are taken as a case study as a good practi-
cal example for complex nonlinear systems. The topic of robot control is
discussed starting from fully model-based control to neural network-based
online adaptive control. The concept of combined controller-observer de-
sign is discussed in detail. Design so that the nonlinearities are completely
estimated online by an adaptive neural module is presented. Stability is-
sues are addressed using formative mathematical analysis based on a
Lyapunov approach. This chapter also presents fuzzy logic control (FLC)
and describes two interesting design examples of FLCs.

Sisil Kumarawadu
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Chapter 1

Introduction to Control
Systems

1.1 Background

To start with, it is important to understand the concept of feedback or
closed-loop control. Consider writing University of Moratuwa on the white
board with a marker pen attached to someone’s fingers. Here, there is a
perfect feedback control system in that eyes are used to capture the images
of what is actually being written, alignments, spacing between the words,
clarity etc. These images are encoded and sent to the brain for processing.
Brain, knowing what is expected to be written and other specifications such
as alignments and clarity, can now compare what is expected (reference)
and what is actually happening (measured output based on visual sensor
information) and control the movements of the muscles of the arm and
hand in a way the difference between the reference and the output is always
kept minimum. Difference between the reference and the output is usually
referred to as the error in control systems terminology.

Above is an example for a feedback control system, which is com-
pletely biological. Automatic control is referred to as control of dynamical
systems without a direct human involvement during the operation. For
instance, by the use of today’s technology, one can automate the afore-
mentioned totally biological control system by replacing the eyes by video
cameras, brain by a digital computer, hand by a robot arm, muscles by
electric motors, and hand by a suitable robot end-effector. Marker pen
is just a tool and may remain the same in both the systems. One may
define the desired trajectory of the pen tip in terms of (z, y) coordinates
in a Cartesian frame that is fixed on the white board. Machine vision or
computer vision is a rapidly growing technology in which digital computer
is used to process and analyze the images captured by cameras. Image
processing followed by some coordinate transformations can help recover
the actual trajectory of the pen tip. The control algorithm, which is a
software program running on another digital computer should be capable
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of producing control commands to the electric motors in a way the error
is always regulated at zero.

Fig. 1.1 indicates a standard error feedback control system configu-
ration. The plant or the controlled system is the system that is controlled.
The feedback element is typically a sensor that feeds the plant output back
to be used by the controller. Often, the most challenging task of the de-
signer is to determine the structure of the controller, which is driven by
the difference between the reference input and the fed-back output signals.
Understandably, the reference input is the desired output.

P o/rP

A signal or information Controlled system
processing device

|Feedback|
| E!ement|

Sensor

Figure 1.1: Block diagram of the standard error feedback control system.

1.2 Open-loop Versus Closed-loop Control

Consider writing University of Moratuwa on the white board with a marker
pen, but this time with the eyes closed. Even though the past experience
may enable doing a reasonable job, if tried to write it a bit faster may
result in alignment, spacing issues etcetera producing a piece of writing
that is unacceptable. The reason for this is the absence of feedback to be
compared with the reference input or the desired way of writing. There
is no way to correct the movement of the pen as the brain can not know
what is exactly happening.

Another example is the fact that a deaf can not speak properly even
though he may have gone deaf after he learned how to speak. In the error
feedback control point of view, what he actually wants to speak represents
the reference input and what is actually being spoken is the sensed output.
Output quantity has no influence in the input quantity (and hence in the
controller) and hence there is no feedback in the control system. Fig. 1.2
indicates a standard open-loop control system configuration.
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I/P o/pP
Controller Plant

Figure 1.2: Block diagram of the standard open-loop (feed-forward) control
system.

A common automatic control example for open-loop control is do-
mestic bread toaster. The setting of the darkness knob or timer represents
the reference input, and the degree of darkness or crispness of the toasted
bread is the output. If the degree of darkness is not satisfactory, may be
because the type of bread is different, there is no way to automatically
alter the length of time the heat is supplied. The sensors that can be
considered here may be touch sensors or miniature color camera or both.
But incorporating such sensors and accessories in high temperature envi-
ronment is not an practical option due to added complexity and the cost.
Furthermore, high precision control is not an issue of concern in this ap-
plication. In general, the reasons for opting for the option of open-loop
control may be either high-precision control is not required or sensing is
practically impossible or financially unjustifiable or both.

1.3 Essence of Transforms in Control Theory
1.3.1 An nth-order System

Applied mathematics is an essential tool in the studies and theoretical
analyzes of control systems. If the mathematical models of the systems
are available, the designer, through analyzing them, can arrive at reason-
ably predictable and reliable designs without depending heavily on thorny
repetitive real-world experimentations and extensive computer simulations.
Dynamical systems can be mathematically modeled by differential equa-
tions. These equations generally involve derivatives and integrals of the
independent variables with respect to the dependent variable. Consider
a moving ground, aerial, or underwater vehicle. Equations of its transla-
tional motion can be modeled by the use of Newton’s 2nd law, F' = mz,
where F' is the total external force in the z-direction, m is the mass, and
Z is the acceleration in the z-direction. Once substituted for F', one ends
up with a differential equation. Consider an electric circuit that in general
consists of resistors, capacitors, and inductors. Writing Kirchoff’s laws give
the governing differential equations of the circuit. Same is valid for other



