REAL-TIME
EMBEDDED SYSTEMS

DESIGN PRINCIPLES AND ENGINEERING
PRACTICES

Xiaocong Fan '

Real-Time Embedded Systems

Design Principles and Engineering Practices

Xiaocong Fan

AMSTERDAM » BOSTON » HEIDELBERG « LONDON
NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO
SAN FRANCISCO = SINGAPORE * SYDNEY « TOKYO

Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 |GB, UK
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-801507-0

For information on all Newnes publications
visit our website at http:/store.elsevier.com/

Typeset by SPi Global, India
15 16 17 18 10 9 8 7 6 5 4 3 21

= q‘ : Working together
E —AM8 1o grow libraries in
ELSEVIER Book Aid

mematons developing countries

www.elsevier.com » www.bookaid.org

Real-Time Embedded Systems

g K. FESARGAELIEL: www. ertongbook. com

Preface

An embedded system is an electronic system that is designed to perform a dedicated function
within a larger system. Real-time systems are those that can provide guaranteed worst-case
response times to critical events, as well as acceptable average-case response times to
noncritical events. When a real-time system is designed as an embedded component, it is
called a real-time embedded system. Real-time embedded systems are widespread in
consumer, industrial, medical, and military applications.

As more and more of our daily life depends on embedded technologies, the demand for
engineers with the skill set for the development of real-time embedded software has soared in
recent years. As a consequence, preparing students for the design and implementation of
embedded software is becoming increasingly important. This textbook is written especially
for advanced undergraduates or master-level students who are pursuing a major in software
engineering, computer engineering, or a related discipline. The textbook may also benefit
practicing engineers with a concentration in embedded software development.

This book takes a synergetic approach to introducing ideas and topics from real-time systems,
embedded systems, and software development principles. Readers will not only gain a
thorough understanding of concepts related to microprocessors, interrupts, and the
cross-platform development process, and appreciate the importance of real-time modeling and
scheduling, they will also be trained in good software engineering practices such as model
documentation, model analysis, design patterns, and system standard conformance.

This textbook features three aspects that are essential for the development of real-time
embedded software.

First, developing software for real-time embedded systems involves many activities, including
specification of requirements, timing analysis, architecture design, multitasking design, and
cross-platform testing and debugging. This book covers the whole process of embedded
software development, with some topics fully explained and others only briefly mentioned
(e.g., debugging and testing). In particular, this book presents various embedded software
architectures in a systematic way, with a focus on a real-time operating system, which is the
most advanced architecture adopted in large real-time embedded systems. Moreover, we have
chosen to place significant emphasis on reusable design solutions. As shown in Table 0.1, this

Xv

xvi Preface
Table 0.1 Summary of design patterns
Category Pattern Name Where in the Book
ISR-Pattern-min Section 4.5.1
ISR-Pattern-server Section 4.5.2
Interrupt chaining Figure 4.7 in Section 4.5.3
ISR Interrupt cascading Figure 4.9 in Section 4.5.4
Interrupt disabling Figure 4.11 in Section 4.5.5
Double buffering Figure 4.12 in Section 4.5.5
Honor first request Figure 12.17 in Section 12.3.2
. Abstraction-occurrence Figure 6.25 in Section 6.3.4
Subclassing

General hierarchy

Figure 6.27 in Section 6.3.4

Software architecture

Round-robin DAS
Round robin with interrupts
FIFO queuing
Priority queuing
Serial port design pattern

Figure 12.10 in Section 12.2.2
Figure 12.16 in Section 12.3.2
Figure 12.20 in Section 12.4.1
Figure 12.21 in Section 12.4.2
Figure 14.5 in Section 14.2.2.1

Static task scheduler

Clock based
Frame based
Timing wheel

Section 15.2
Section 15.3
Section 22.3

Semaphore/mutex

Rendezvous synchronization pattern
Multi-instance resource protection

Figure 18.8 in Section 18.3.1
Figure 18.19 in Section 18.4.1

Condition variable

Barrier synchronization pattern
Producer-consumer pattern
Read-write lock pattern

Figure 18.24 in Section 18.5.1
Figure 18.25 in Section 18.5.2
Figure 18.30 in Section 18.5.3

Message queue

Unidirectional queuing pattern
Acked-unidirectional queuing pattern
Bidirectional queuing pattern
Client-server queuing pattern

Figure 19.5 in Section 19.3.1

Figure 19.6 in Section 19.3.2
Figure 19.7 in Section 19.3.3
Figure 19.10 in Section 19.3.4

Pipe

Unidirectional piping pattern
Bidirectional piping pattern

Figure 20.3 in Section 20.3
Figure 20.3 in Section 20.3

Deadlock avoidance

Hierarchical messaging pattern

Figure 21.8 in Section 21.7.3

DAS, detect-acknowledge-service; FIFO, first in first out; ISR, interrupt service routine.

book introduces many design patterns, which represent the best practices that can be reused in

a wide range of real-time embedded systems.

Second, Unified Modeling Language (UML) is a graphical language for specifying,

visualizing, constructing, and documenting software systems. UML is useful in a variety of
engineering problems, from single-process, embedded systems and stand-alone user
applications to concurrent, distributed systems. This text features UML 2.4, the latest UML
standard as of this writing. Throughout the book, UML diagrams are used for both system
designs and concept illustrations. In particular, the UML real-time profile is carefully
presented so that students can learn how to document their designs of real-time systems in a
professional way.

Preface xvii

Third, POSIX (for “portable operating system interface”) is an open operating system
interface standard that has been developed to promote interoperability and portability of
applications across variants of Unix operating systems. Software systems built upon one
real-time operating system can be easily ported to other POSIX-compliant operating systems.
This text features POSIX.1-2008 (2013 edition). The operating system services and concepts
covered in this book are fully compatible with the POSIX.1-2008 standard. The example codes
provided in this book have been tested in QNX—a real-time operating system widely adopted
in industry. Since QNX is POSIX compliant, the programs may also be compiled, without
changing the source code, for execution on another POSIX-compliant operating system.

Briefly, this textbook consists of four parts:

e Part I is dedicated to a basic introduction to real-time embedded systems and the iterative
development process. Although our emphasis is on the software aspects, complete
isolation from the underlying hardware is neither feasible nor desirable. For such a reason,
this part also contains two chapters on microprocessors and interrupts—fundamental
topics for software engineers who wish to build embedded systems.

e Part Il is dedicated to modeling techniques for real-time systems. In particular, we
introduce the modeling tools covered by UML—a standard widely adopted in both
academia and the software industry. Moreover, we introduce real-time UML—a profile
for specifying real-time-related constraints in system models. UML diagrams are
consistently used throughout the book to illustrate key concepts and design patterns.

e Part Il is dedicated to the design of software architectures for real-time embedded
systems. We start with generic architectures, which lead us to the most complicated
architecture—a real-time operating system. The focus is then switched to multitasking
and real-time scheduling—two critical issues to be addressed by any designers of
real-time embedded systems.

e Part IV is dedicated to system implementation. We especially focus on those mechanisms
available on any POSIX-compliant operating systems; this means that the
design/implementation patterns given in this book are applicable to other
POSIX-compliant operating systems as well.

The four parts together have 23 chapters. A one-semester course can use selected chapters/
sections to suit the interests of the instructor and students, For instance, some microprocessor
types in Chapter 3 can be skipped in order to fit the materials in one or two lecture time. If
UML basic modeling concepts have been covered in a prerequisite course on software
engineering principles, chapters 6, 7, and 8 can be used as self-reading assignments or simply
used as a reference. Depending on the students’ familiarity with basic concepts of operating
systems, some topics covered in Part IV (say, message queue, pipe, and signals) can be treated
differently.

xviii Preface

To aid instructors and students in using this text, we provide a supplements package on
Elsevier’s companion website: http://booksite.elsevier.com/9780128015070. This package
includes PowerPoint slides and source code.

In this text, I have not been able to cover every major topic concerned with real-time
embedded systems. I have exercised my best judgement in deciding which topics are suitable
for software engineers, which to emphasize, and which to omit. Seriously interested readers
may refer to other textbooks for different perspectives.

Comments from colleagues are encouraged and welcome. Please feel free to send suggestions to
Xiaocong Fan, Behrend College, Pennsylvania State University, Erie, PA 16563, USA (e-mail:
xfan@psu.edu). I look forward to hearing from you about your experiences with the text.

Erie, PA, August 2014 Xiaocong Fan

Acknowledgments

First of all, I am grateful for the opportunity to learn from many excellent texts available on
real-time systems or embedded systems, the authors including Jane W.S. Liu, David E. Simon,
Rob Williams, Qing Li, and Bruce P. Douglass, to mention only a few. They may recognize
their influence in some parts of the book, directly or indirectly.

I am indebted to the reviewers for numerous comments and enlightening suggestions. I would
like to thank my students, who have been influential in shaping my thoughts on how best to
organize and teach a course on real-time embedded systems.

The final manuscript was ably edited by SPi. A most special thanks go to Tim Pitts, Charlie
Kent and Nicky Carter at Elsevier. This book would not be possible without their graceful
management and great patience.

Xix

R FEEARBAELIE: www. ertongbook. com

To my wonderful wife, Yan,
and our precious sons—Mutian and Aaron

Acronyms

AlIC Advanced interrupt controller

ANSI American National Standards Institute
BSP Board support package

CAN Controller area network

CISC Complex instruction set computing

COFF Common Object File Format

COM Serial communication port

CPU Central processing unit

CSPR Current program status register

DAS Detect-acknowledge-service

DMA Direct memory access

DSP Digital signal processor

DTCM Data tightly coupled memory

EDF Earliest deadline first

EEPROM Electrically erasable programmable read-only memory
ELF Executable and Linking Format

EOI End of interrupt

EPROM Erasable programmable read-only memory
FIFO First in first out

GPR General-purpose register

GRM General Resource Modeling

GRM Graphical user interface

HLP Highest locker protocol

HNERT Highest-priority nonempty ready-thread list
12C Inter-Integrated Circuit

IC Integrated circuit

ICE In-circuit emulator

ICR Interrupt command/status register

IEEE Institute of Electrical and Electronics Engineers

XXl

xxiv Acronyms

IMR Interrupt mask register

INV Interrupt vector number

IP Internet Protocol

IQR Interrupt request

IRR Interrupt request register

ISR Interrupt service routine

LNA Low-noise amplifier

LSb Least significant bit

LSB Least significant byte

MMU Memory management unit

MOF Meta Object Facility

MSB Most significant byte

NVM Nonvolatile memory

OCL Object Constraint Language
OMG Object Management Group

OOM Object-oriented modeling

oop Object-oriented programming

0S Operating system

PC Personal computer

PCP Priority ceiling protocol

PCR Program counter register

PDF Probability distribution function
PIC Programmable interrupt controller
PIT Programmable interval timer
POSIX Portable Operating System Interface
PRF Pulse repetition frequency

QoS Quality of service

RAM Random-access memory

RF Radio frequency

RISC Reduced instruction set computing
RMA Rate-monotonic assignment

ROM Read-only memory

RTOS Real-time operating system
RT-UML Real-time Unified Modeling Language
SFR Special-function register

SPI Serial peripheral interface

SRAM Static read-access memory

TCM Tightly coupled memory

UART Universal asynchronous receiver-transmitter
UML Unified Modeling Language

UuTC Coordinated Universal Time

Contents

PrEfACE.....aunecennenniennirniinnnieiiiiaienesientirseiissitssierssrsssessssssessassosssssssssssessnssns xv
AckHOWISAEIMBIES ... cvvsensavsrenssnssansrsassssussonssssssonsonssssinsnsnsssosnssnssossoasssssssnsmuseossara Xix
DBAICALION ossucsvvivssnmsnsvoinsrsovansoainviaessaessseisnemssme e (s S s s is S as Ao san w95 Xxi
PRI 0 TR bl o AT S e v T S RS G S LT SR ol i Woren i B e sl XXiii

Part I: INErOAUCLION «.oueveeeereeineensiasesseesacesonsassessasssesscnssescessessansansans |

Chapter 1: Introduction to Embedded and Real-Time Systems...................cccuvveveenns 3
1.1 Embedded SyStems....coco ittt e e e e s e enaans 3
1.2 Real-Time SYSIBIIRrummsssetmoonssissmvssseusisssmsess sossvssssisssescsamssas samsrmassmn s 5

1.2.1 Soft Real-Time SyStemS........coeeeiiiiiiiiieiiiiiiee e e e et e e 5
1.22 Hard Real-Tifie SYSIENNS «.suvsmmsvsmmssssvnsvovssmsvsvsmivivsmasnssesensssasassusssasssasss 6
1.2.3 Spectrum of Real-Time SyStemsooiiiiiiiiiiit e 7
1.3 Case Study: Radar SYSIEI . . cuemomsrmussssussassesssssossassessssssissssavantssssssisnsassissasesses 8
PIODIEIIS cumn oecmmunmonmenenasnmmusanssmanspasmomamponane xusaassaianaviss snakyus o ionibiio ebub bnainstien Shisbadnoriens 13

Chapter 2: Cross-Platform Development..................uueeeciieveerenrunsiiineeenennensesenee 15
2.1 Cross-Platform Development ProCess cmmsasussmssmsssssovssossasmssssnnsssasnssssssusssans 16
2.2 Hardware ATChItECIUTEcueiiiiiirneeteeeeteeeeeinieersteeeeeeeeeeseaaesneeseaeeesessennnnnnns 17
23 Solbware Developmeiil. . csmansmasmnvsrmamsssminsssismns s axassssnsssssmss 18

2:3.1 SoftWareDESIFIL.ermenommicssmmsammsinsess s i issimiionsisbiosnississisaissonniomeiises 18
2.3.2 System Programming Language C/CH+......coooiiiiiiiiiiiiiiiiiiiiiiiicieeieeeee 18
2.3.3 Test Hardware-Independent Modules...........cccccoeiviiiiiniiiiiiiniiineniieennn. 25
2.4 Build Target IMages ...coouuviiiiiiiiiiiiiiiiiciniin s s 25
24.1 Cross-Development TOOIChAIN «i.cuisssisinisisissivsmimisssimsssmmissnsssssnssosnissaseasons 25
2.4.2 Executable and Linking FOrmat.......ccccoovvuiiiiiiiiiniiiiiiiiec e, 28
243 Memoty MAPDING .cvcsuusississssvsssmvsmamssssisssissssssvsssssvisssissssssssasmmmrsises 34
244 Case Study: Building a QNX Image.......ccocoeeivemiiiiiiiiiiiniiiieeeiee e 36
2.5 Transfer Executable File Object to Target.......cccccooviviiiiiiiiiiiniiiiiienecciienne. 38
26 Intepgrated TESHNE O TafERlssrssusmnnnansrassnmsmnmnsnisr g riisisesmmes snmmsrnte s 39
2.7 System ProduCtionocuuiiiiiiiiiiiiiiie i 39
O DI BINIEE 2. 2. e 5 5 0 Y A 55 TR T R TR A S SN S S0 Tt 40

vi Contents

Chapter 3: Microprocessor PrIMIErccueueeeieiunneinirinieiiniiisesnnsesisnnssennens 41
3.1 Introduction t0 MiCTOPrOCESSOTSuuuiriiiiiiiiiieiieiiie e 42
3.1.1 Commonly Used MiCTOPrOCESSOTS ... uuviiiiiiiiieaaeiiiiieee et 42

3.1.2 Microprocessor Characteristicsccooviiiiiiiiiiiiiiiiiiiiie e 44

32 Miciochip: PYCTEEST UM o insnssiein sonnn snmsisssianas iesn ssisnan o5 inian amss 56 56596 mhasss ssa'ias 48
32,1 Memory OrganizZationcc.eeeeeeeuieeieieiiieesesiieeeeesieiee s e s seeeee e e enenens 48

3.2.2 WOrd Write MOd@......eveiiiiiiiiiiiiiiiiiii et e e e e 52

3.2.3 Byte Select Mode........ooiiiiiiiiiiiiiiiiiieiii e O

324 BV Wilite IS8 rsoces o oo ssmrnsssmsssmmms s s s as s me s & SRS 57

3.3 INEEEBOBO ... ettt e 58
%.3.1 Memory QrEaNTZATION s cuvsvnsomssincinincvissssio svsseoisesssmims o mamses s o s svansss 60

3.3.2 Separate /O Address SPace........c.c.ooevuieiiiiiiiiiiiiiiii e 61

3:.3:3 Memory AdArEsS: SPACE: s sussssssviansinsessssssiimsnivssssssnavesassneseness s sin 64

3.314 WA SEALES . .eeie et ettt e e e et 65

34 Intel PO e meevesmsrstmsss o ommsss e somsimmmess i smesss s s s e st 68
3.4.1 Bus State TransSitioncoueiiiiiiiiiiie e 71

34:2 Memory OrGaANIZAION . . cosnsevssssvunss cnes s swswsn cris crasss st ssms s 5305 00 56 53 850 S35 srswos 75

3.5 ARMO20EI-S. et e e e e 77
381 TCOM INEHIACE: wcusssssssissesvamsammmsvsssssssvesenmmimoasssveseessoseves s 555 s 78
ProbIems ..o 81
Chapter 4: IHLEFIUDES..useerersssonrsossssprnsssaussessunesronearrossssanssassensnssssaesessasyanssssn 85
4.1 Introduction tO INTEITUPES.......ueueiiiiiiiiiiii it 86
4.2 Bternal INCeITUPTS o ovmvom ssnmsvom ssmmsnsssins oo senassnsos 685 wesss s5508 56 45 55as58an 60A50 4554 5550554 86
4.2.1 Nonvectored INerruPtingoeieiiiiiiieiiiiieee et eee et e 87

4.2.2 PIC and Vectored INterrupting...........cociriiiiiiiiniiiii e 88

4.3 Software INTEITUPLS......ooiiuiiiiiiii e a e s 95
A ISR TIOBTITTIER con osmis s comas o0 s coi s fE0 00585025 5050 0 S35 S RS S B ammmmmsnso 96
4.5 Design Patterns for ISRS ... 97
4.5.1 Gefieral ISR Design Pattorile e amsmmo mminiinsiiomescss s assnss sosssssamonss 97

4.5.2 ISR with a Server TasK........coooiiiiiiiiiii e 98

A.5.3 ISR ChANING suressssssn sassssssscnsseinssssnessnsnss someins 55955 5048 5 5585 Sor vk sinasass ssisn 99

454 ISR CaSCAING ..vvviiiiiiiiiiiiiiiiiiieie et e e e e e e e e e e e e e e aaneas 100

4.5.5 Data Sharing with TSRSccciiiiiiiiiiiiiiiiiiiiiiiiie e 101

4.6 Interrupt Response TImMec.ooiiiiiiiiiiiiiice e 104
47 CaSE STUAY: XBO .ttt e et e e e s e e e e e e e ea e 105
4.7.1 Hardware INterruptscoooiiiiiiiiiiee e 108

4.7.2 Put It All TOZELhETovviiiiiiieiiiiiiieee e 110

4.8 Case . Study: ARM PrOCOSSOL .o sosssissrsssmassmssvssmsiveisssusssessassisses sosss sossaensnn 111
4.8.1 Hardware INEITUPLS .eoooviiiiriiiiiiieeieisesi ettt sreaee s e e e e e e e e s eanens 113

4.8.2 Put It All TOZEhET «.uusmumnumessvvmsmmsmsmsnsanmmmsns ssseravsivimsmssssss s snsssa s s 5 5 115

PIODICINIS ..o e e e e 117

