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Chapter 1
Algebra and Problem Solving

Exercise Set 1.1

10.

11.

12.

13.

14.

. Seven more than some number

Let n represent the number. Then we have

n+7 or7+mn.

. Let n represent the number; n — 2

. Twelve times a number

Let t represent the number. Then we have
12¢.

. Let z represent the number; 2z

. Sixty-five percent of some number

Let = represent the number. Then we have

65
0.65z, or ﬁx

39
. Let x represent the number; 0.39z, or —=.

100

. Nine less than twice a number

Let y represent the number. Then we have
2y —9.

1
. Let y represent the number; Ey + 4, or % +4

. Eight more than ten percent of some number

Let s represent the number. Then we have
0.1s+8

Let s represent the number; 0.06s — 5, or %Os -5

One less than the difference of two numbers

Let m and n represent the numbers. Then we have

m-—n—1.

Let m and n represent the numbers;

mn + 2

Ninety miles per every four gallons of gas
We have

90
90 =+ 4, or ==
or 4
100
100 = 60, or —
°' 60

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Substitute and carry out the operations indicated.
dr—y=4-3-2

=12-2
=10
19
Substitute and carry out the operations indicated.

2c+3=2-6+3-4

=12+3-4
=44
=16
9
Substitute and carry out the operations indicated.

251245 =25-32+7

=25-9+47
=16+7
=23
11
Substitute and carry out the operations indicated.

3n?p+2p* =3-52.342.34

=3-25-3+2-81
=75-3+162
= 225+ 162
= 387
280
Substitute and carry out the operations indicated.

St +(2+z—-y)=5-6+-(2+6-2)

=5-6+(8-2)
=5-6+6
=306
=5

3

Substitute and carry out the operations indicated.
29 — (a —b)? = 29 — (7 — 2)?

=29 — 52
=29-25
=4

64



2 Chapter 1: Algebra and Problem Solving
27. Substitute and carry out the operations indicated. 49. Since v/8 is not a rational number, the statement is
m +n(5 +n2) = 15+ 3(5 + 3) false.
=15+3(5+9) 50. False
=15+43-14
51. Since every member of the set of irrational numbers
=15+42 is also a member of the set of real numbers, the state-
=57 ment is true.
28. 40 52. True
29. We substitute 5 for b and 7 for h and multiply: 53. Since 4.3 is not an integer, the statement is true.
1 1
A=§~b~h=§~5-7=17.5sqft 54. True
30. 3.045sq m 55. Since every member of the set of rational numbers is
. also a member of the set of real numbers, the state-
31. We substitute 4 for b and 3.2 for h and multiply: ment s trte
1 1
A= 5-b-h= —2-(4)(3.2) =6.4sqm 56. False
32. 9.2sq ft 57. @
33. List the letters in the set: {a,e,i,o,u}, or 58. @
{a‘1e7i707u7y} @
59.
34. {Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday} 60. @
35. List the numbers in the set: {1,3,5,7,...} 61. The product of the sum of two numbers and their
difference
36. {2,4,6,8,...} Let a and b represent the numbers. Then we have
37. List the numbers in the set: {7,14,21,28,...} (a+b)(a—1b).
38. {10,20,30,40,...} 62. Let m and n represent the numbers;
3(m +n)
39. Specify the conditions under which a number is in
the set: {z|z is an odd number between 10 and 30} 63. Half of the difference of two numbers
40.. {ele is o multiple of 4 between, 22 and 45) Let 1; and s represent the numbers. Then we have
r—s
41. Specify the conditions under which a number is in E(T =8} ok 2
the set: {z|z is a whole number less than 5} -
64. Let z and y represent the numbers;
42. {z|z is an integer greater than —4 and less than 3}
43. Specify the conditions under which a number is in B8, Ehe onI).' whole.number — s it ales 4 Dabimal
. . number is 0. Using roster notation to name the set,
the set: {n|n is a multiple of 5 between 7 and 79}
we have {0}.
44. {z|z is an even number between 9 and 99} 66. {~1,-2,-3,...)
5. Si 3i i
4 fS;II;cee 7.3 is not a natural number, the statement is &7, sk thes timibers 5 the set:
{5,10,15,20,...}
46. True
68. {3,6,9,12,...}
47. Since every member of the set of natural numbers
is also a member of the set of whole numbers, the 69. List the numbers in the set:
statement is true. {..,—4,-2,0,2,4,...}
48. True 70. {1,3,5,7,...}



Exercise Set 1.2

71.

Recall from geometry that when a right triangle has
legs of length 2 and 3, the length of the hypotenuse is

V22132 = /4 +9 = /13. We draw such a triangle:

Exercise Set 1.2

1. |-8/=8 —8 is 8 units from 0.
2.7
3.19=9 9 is 9 units from 0.
4. 12
5. |—-6.2)=6.2 —6.2 is 6.2 units from 0.
6. 7.9
7. 10]=0 0 is O units from itself.
3
8. 3Z
9; ‘1%\ = 1% lg is 1% units from 0.
10. 0.91
11. |- 421| =421  —4.21 is 4.21 units from 0.
12. 5.309
13. -8< -2
—8 is less than or equal to —2, a true statement since
—8 is left of —2.
14. —1 is less than or equal to —5; false
15. -7>1

16.

17.

18.

19.

—7 is greater than 1, a false statement since —7 is
left of 1.

7 is greater than or equal to —2; true

3>-5

3 is greater than or equal to —5, a true statement
since —5 is left of 3.

9 is less than or equal to 9; true

-9< -4

—9 is less than —4, a true statement since —9 is left
of —4.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

7 is greater than or equal to —8; true

—4> -4

—4 is greater or equal to —4. Since —4 = —4 is true,
—4 > —4 is true.

2 is less than 2; false

—-5< -5
—5 is less than —5, a false statement since —5 does
not lie to the left of itself.

—2 is greater than —12; true

5412
Two positive numbers: Add the numbers, getting 17.
The answer is positive, 17.

16

—4 4+ (=T7)
Two negative numbers: Add the absolute values, get-
ting 11. The answer is negative, —11.

-11

=5.94 2.7

A negative and a positive number: The absolute val-
ues are 5.9 and 2.7. Subtract 2.7 from 5.9 to get 3.2.
The negative number is farther from 0, so the answer
is negative, —3.2.

5.4

2 - 3 10 @ 21

7 5) 35 35

A positive and a negative number. The absolute val-
21 10 21

ues are — and —. Subtract — from — to get —

35 0 35 O 35"
The negative number is farther from 0, so the answer

: ; 11
Is negative, — 3—

1
40

~4.9 + (-3.6)

Two negative numbers: Add the absolute values, get-
ting 8.5. The answer is negative, —8.5.

-9.6

A,2_ 1.6

9 3 9 9
A negative and a positive number. The absolute val-
ues are 3 and —. Subtract 1 from . to get —. The
positive number is farther from 0, so the answer is
positive, —
3

10



4 Chapter 1: Algebra and Problem Solving
37. 0+ (—4.5) 61. —6—(—10) = —6+10 Change the sign and add.
One number is zero: The sum is the other number, —4
—4.5.
62. 6
38. -3.19
63. —4—13=—-4+(-13) = -17
39. —7.24+7.24
A negative and a positive number: The numbers 64. —15
?Sa(\)/e the same absolute value, 7.24, so the answer 65. 2.7— 5.8 = 2.7+ (=5.8) = —3.1
40. 0 66. —0.5
41. 15.9 + (—22.3) o7, 2 _1_ 38, (_ l)
A positive and a negative number: The absolute val- 5 2 . %
ues are 15.9 and 22.3. Subtract 15.9 from 22.3 to get =8 ( _ i) T —_—
6.4. The negative number is farther from 0, so the 10 10 d g
g : enominator
answer is negative, —6.4. 1
42. —6.6 10
13
43. The opposite of 7.29 is —7.29, because —7.2947.29 = 68. —-=
0.
69. —-39—(-6.8) =-3.9+6.8=29
44. —5.43
1 1 1 1 70. —-1.1
45. The opposite of —4= is 4=, because —4= + 4= = 0.
PP 3773 3773 71. 0— (=7.9)=0+7.9=7.9
46. —2% 72. -5.3
47. The opposite of 0 is 0, because 0 + 0 = 0. 73. (—4)7
3 Two numbers with unlike signs: Multiply their ab-
48. 2:1. solute values, getting 28. The answer is negative,
—28.
49. If z =7, then —z = —7. (The opposite of 7 is —7.) 74, —45
50. -3
75. (—3)(-8)
51. If £ = 2.7, then —z = —(-2.7) = 2.7. Two numbers with the same sign: Multiply their
(The opposite of —2.7 is 2.7.) absolute values, getting 24. The answer is positive,
24.
52. 1.9
76. 56
53. If z = 1.79, then —z = —1.79. (The opposite of 1.79
is —1.79.) 77. (4.2)(-5)
Two numbers with unlike signs: Multiply their ab-
54. -3.14 solute values, getting 21. The answer is negative,
55. If z = 0, then —z = 0. (The opposite of 0 is 0.) Bes
56. 1 78. —28
3
57. 9—-7=9+(—7) Change the sign and add. 79. 77'(_1)
=2 Two numbers with unlike signs: Multiply their abso-
58. 5 lute values, getting 7 The answer is negative, -
59. 4-9 =14+ (-9) Change the sign and add. 80. _2
= -5 5
81. 152x0=0
60. —7



Exercise Set 1.2

82.
83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

0

(=3.2) x (-1.7)
Two numbers with the same sign: Multiply their

absolute values, getting 5.44. The answer is positive,
5.44.

8.17

-10

-2

Two numbers with the same sign: Divide their ab-
solute values, getting 5. The answer is positive, 5.

5
-100

20
Two numbers with unlike signs: Divide their abso-

lute values, getting 5. The answer is negative, —5.
—10

73 RN

-1

Two numbers with unlike signs: Divide their abso-
lute values, getting 73. The answer is negative, —73.

—62
0
= 0
0
. 1 1
The reciprocal of 5 is 5 because 5 - 5= 1.
; o1 1
The reciprocal of —9 is _—r or -3 because
1
-9 — =) =1.
(-3)-
1
7
2.3 2 3
Th i lof - is — - ==
e reciprocal o 3 is 1 because 33 1
7
4

The reciprocal of —% is —131, because

3 11
‘H(“g‘)—l-

Multiplying by the reciprocal of 4/5

5
102. 21
103. e R
5 2
3 2 o e -
=-%'1 Multiplying by the reciprocal of 1/2
...
B
12
04. ——
4 7
2
105. —Z2) = (=
(-)+co
2 1 o Fe e
= e ( — §) Multiplying by the
reciprocal of —8
1
~ 72 36
1
106. —
33
12 12
107. - +(-1) = - (—1) Multiplying by the
reciprocal of —1
12
T
2
108. 7
109. 12—-(9-3-2%) = 12— (9 — 3-8) Working within
=12—-(9—24) the parentheses
=12 - (-15) first
=12+15
=127
110. -3
13y, 5°2-4 _5.2-16 _10-16 _ -6 6
-2t T r—1e. 11 Y1
112, —i
17
3'—(5-3)* 3*-2¢ 81-16 65 65
113. - ” = 00 o o 22
1-23 1-8 -7 =7’ 7
55
114. —
2
115. 5° - [2(42 - 32-6)]> =5% - [2(16 — 9 — 6)]° =
5 —[2-1P=5°-28=125 -8 =117
116. 13
17 |2-7P+1=4-7P+1=|-33+1=
B +1=27+1=28
118. 79



6 Chapter 1: Algebra and Problem Solving
119. 30— (=5)2+ 15+ (=3)-2 133. 4(z —y)
=30-25+15+(—3)-2 Evaluating the =4-z—4-y Using the distributive law
exponential expression =4z — 4y
=30-25-5-2 Dividing
=30-25-10 Multiplying 134. 9a — 9
= -5 Subtracting 135. —5(2a + 3b)
120. 0 = —5-2a+ (—5)-3b
. = —10a — 15b
121. 12-/7-3+4+3-23
=12-2+4+3-8 137. 2a(b—c+d)
:12—2+£-8 =2a-b—2a-c+2a-d
32 = 2ab — 2ac + 2ad
=12-2+=2
3 138. 5zy — 5z + Szw
32
=W+3 139. 52+5y=5-2+5 -y =5(z +y)
62
=z 140. 7(a + b)
. —9=3-p—-3-3=3 —
122. 13%, or 2—27 Tl 3p =0 =Bop=:3 (p-3)
142. 3(4z — 1)
123. Using the commutative law of addition, we have
3z + 8y = 8y + 3z. 143. Tz - 21y =7-2 -7 -3y = 7(z — 3y)
Using the commutative law of multiplication, we 144. 3(2y — 3)
have
3z + 8y = 3+ 8y 145. 22 -2y +2:=2-0-2-y+2-2=2(x -y +2)
or 3z + 8y = 3z + y8 146. 3(z +y — )
or 3x + 8y = x3 + y8.
5 gt 8 147. Five less than seventy percent of a number
124. 9 :
T T Let = represent the number. Then we have 0.7z — 5,
125. Using the commutative law of multiplication, we or —I — 5.
have 100
7 = y(7 1
(T2)y = y(7z) 148. Let z represent the number; —z + 2
or (7Tz)y = (z7)y. 2
149.
126. (ab)(~9); —9(ba) 9. &
150.
127. (3z)y @
= 3(xy) Associative law of multiplication 151. @
128. (—7a)b 152. &
_])2 =
. s+ (2y+5) 153. (3-8)24+9 =34
= (r+2y)+5 Associative law of addition 154. 2 (7+3%-5) = 104
130. 3y + (4 + 10) 155. 5-23 + (3 -4)* =40
131. 3(a+1) 156. (2-7)-224+9=—-11
=3-a+3-1 Using the distributive 1
@ S e disinbuiive lnw 157. Any value of a such that a < —6.2 satisfies the given
=3a+3 conditions. The largest of these values is —6.2.
132. 8z + 8



Exercise Set 1.3

158.

5(a+bc)
= (a+bc)5 Commutative law of multiplication
= a5+(bc)5 Distributive law
= a5+(cb)5 Commutative law of multiplication
= ab+c(b5) Associative law of multiplication

= ¢(b5)+a5 Commutative law of addition

Exercise Set 1.3

1.

10.

11.

3x =15 and 2z =10

The equation 3z = 15 is true only when z = 5. Sim-
ilarly, 2z = 10 is true only when z = 5. Since both
equations have the same solution, they are equiva-
lent.

. Equivalent

.z+5=11 and 3z =18

Each equation has only one solution, the number 6.
Thus the equations are equivalent.

. Not equivalent

.13—z=4 and 2z =20

When z is replaced by 9, the first equation is true,
but the second equation is false. Thus the equations
are not equivalent.

. Equivalent

. 5z =2z and é=3
T

When z is replaced by 0, the first equation is true,
but the second equation is not defined. Thus the
equations are not equivalent.

. Not equivalent

r—52=094
z—952+5.2=9.4+52 Addition principle;
adding 5.2
z+0=94+52 Law of opposites
Tz = 14.6
Check:
r—-52=94

T
146-52 7 9.4
94 | 94

The solution is 14.6.

TRUE

6.9
9y =72

% -9y = % - 72 Multiplication plrinciple;
multiplying by 7 the
reciprocal of 9

ly =

y=28

Check:

9y = T2
e
9-8 772

72 | 72 TRUE

The solution is 8.
12. 9

13. 4z — 12 = 60
4z —12+12 =60 + 12

4z = T2

1 1

72
4
18

1z

T

Check:
4r — 12 =60
T
4-18—12 7 60
72 —-12
60 | 60
The solution is 18.

TRUE

14. 19

15. 5y +3 =28
5y +3+ (—3) = 28+ (-3)
5y = 25
1 1
Z .5y ==.9
5 =g
25
ly==
¥=3%
y=35
Check:
5y +3 = 28
—_—
5-5+3 7 28
2543
28 | 28

The solution is 5.

TRUE

16. 9

17. 2y —11 =37
2y—11+11 =37+11
2y = 48

- 48

N =

Ly =

ly =

12 o 01 =

y ==
Check:
2y —11 = 37
T
2:24-11 7 37
48 — 11
37 | 37
The solution is 24.

TRUE



8 Chapter 1: Algebra and Problem Solving
18. 14 41. 4m — (3m —1)
=4dm—-3m+1
19. 4a+5a = (4 +5)a =9a
=m+1
20. 12
0 ’ 42. a+3
21. Trt—9rt = (7T —-9)rt = —2rt
ré=St=T-9 43. 3d—7-(5-2d)
22. 10ab =3d-T-5+2d
23. 822 4+ 2% = (8 4+ 1)z? = 922 = 5d —12
24. 802 44. 13z - 16
25. 12a—a= (12— 1)a=1la 45. —2(z +3) —5(z — 4)
=-2r—6—-52+20
26. 14z - Trild
27. t—9t=(1-9)t=—8t 46. —15y — 45
8- <o 47, 5z -7(2z-3)
29. 5z —3x + 8z = (5—3+8)z =10z = 5z — 14z + 21
= -9z +21
30. —6x
48. —12y + 24
31. 5z — 2z% + 3z
= 5z + 3z — 222 Commutative law of 49. 9a — [7 - 5(7a - 3)]
addition = 9a — [7 — 35a + 15]
= (5+3)z — 222 = 9a — [22 — 354]
= 85 — I = 9a — 22+ 35a
32. 13a — 5a? = 44a — 22
33. 3a + 522 — a + 4a? 50. 47b — 51
=3a—a+5a?+4a®> Commutative law of 51. 5{—2a + 3[4 — 2(3a + 5)]}
addition
= (3=1)a+ (5 +4)a = 5{—2a + 3[4 — 6a — 10}
= 2a + 942 = 5{—2a + 3[-6 — 6a]}
= 5{—2a — 18 — 184}
34. 14z + 223 — 622 — 5{—20a — 18}
35. 4z — 7+ 18z + 25 = —100a — 90
=4z + 18z -7+ 25 52. —-721z — 728
= (44 18)z + (-7 +25) 55 ) P S0 7
— 227 + 18 . y+{78(2y - 5) — By + 7)] + 9}
=2y + {7[6y — 15— 8y — 7] + 9}
36. 9p +12 = 2y + {7[-2y — 22] + 9}
37. —Tt2 + 3t +5t° — 3+ 22 — ¢ =2y +{-14y - 154 + 9}
= (-T+2)2+ (B - 1)t+(5- 1) =2y + {14y - 145}
= —5t% + 2t + 4¢3 =2y — 14y — 145
= —12y — 145
38. —12n + 6n2 + 5n3
54. —11b+ 217
39. a— (2a+5)
=a—2a-5 55. 5$+2$:56
1 1
40. —4z -9 7 TT=556

r =8



Exercise Set 1.3

Check:
5x + 2x = 56

5-84+2-8 7 56
40+ 16
56 | 56 TRUE

The solution is 8.
56. 12

57. 9y — Ty = 42

2y = 42

1 1
-2y ==-42

2 V=3

y =21

Check:

9y — Ty = 42

T
9-21—-7-21 7 42

189 — 147

42 | 42 TRUE
The solution is 21.

58. 13
59. —6y — 10y = —32
—16y = —32
1 1
e 3 =G = e nif
5 (-16y) = —— - (-32)
y=2
Check:

—6y — 10y = —32
T
—-6-2-10-2 7 —-32
-12-20
—32 | =32 TRUE
The solution is 2.

60. —2
61. 2(z +6) = 8z
2x +12 = 8z
20 +12 -2z =8z — 2z
12 = 6z
1 1
Z.12==.
6 6 6x
2=
Check:
2(z+6) =8z

e =
2(2+6) 7 8-2

2.8 | 16

16 | 16 TRUE

The solution is 2.

62. 3

63. 80 = 10(3t + 2)

80 = 30t + 20

80 — 20 = 30t +20 — 20
60 = 30t

1 1
30 60 = 30" 30t
2=t
Check:

80 = 10(3t + 2)
.
80 7 10(3-2+2)
10(6 + 2)
10-8
80 | 80 TRUE

The solution is 2.

64. 1

65. 180(n — 2) = 900
180n — 360 = 900
180n — 360 + 360 = 900 + 360

180n = 1260
1 1
180 180n = 180 1260
n="7T

Check:
180(n — 2) = 900
T
180(7 — 2) 7 900
180-5
900 | 900 TRUE
The solution is 7.

66. 7

67. 5y—(2y—10) =25

5y—2y+10=25

3y+10 =25
3y+10-10=25-10
3y=15
1 1
5.3y=§.15
y=>5

Check:
5y — (2y —10) = 25

T
5:5-(2-5-10) ? 25

25 — (10 — 10)
25-0
25 | 25 TRUE

The solution is 5.

68. 7
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69. Ty —1=23-5y Check:
o= 1 45y = 23 — Sy+ 5y 0.9y—0.7T4.2
12y-1=23 0.9(£) —07 742
12y—1+1=23+1 9
12y = 24 4.9-0.7
! _1 4.2 | 42 TRUE
y=2 The solution is '
Check:
Ty—1=23-5y 74. 13
7-2—-1723-5-2 75. 57 —2+3r=2r+6—4r
14-1 23-10 8 —2=6—92r
13 | 13 TRUE

8r—2+2r=6-2r+2r
The solution is 2.

10r—-2=6
70. —6 10r—24+2=6+2
10r =8
5 10 5 — - 10r=—-8
1,3 1_4 1 10 10
5 100 5 5 5 )
3 3 10
10°°5 r=§
% %x—l—;-% Check:
=2 5r—2+3r?2r+6—4r
Check: 5.3_2 3.3?2.3 6—4-3
1 q 4 5 * 5 5+ 5
5t10°=5 20 _10 128 30 16
5 5 5 5 5 b}
-1-+i 2'7é 22 | 22
5 10 ©5 — — TRUE
5 5 The solution is 5
4 | 4
- | = TRUE
5 5 76. -8

1 1
7. {16y +8) ~17 = —~(8y - 16)

72, — 2Y+1-17= -2y +4
2y—16 = -2y +4

73. 0.9y — 0.7 = 4.2
2y—16+2y = -2y +4+2y
0.9y —0.740.7 = 4.2+ 0.7
dy—16=14
0.9y = 4.9
) i 4y—16+16 =4+ 16
0909 = 5549 1 4y =20
1
49 —dy=>.20
Y=10%9 4 54
49 ¥=
y=—

9
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Check:
1 1
2 —17=—-=(8y—16
8(16y+8) 17 4( y )

1 1
- . — 7 ——(8-5—16
5(16 5+8)—17 (8 )
1 1
e - ——(40 — 16
8(80+8) 17 4( 0 )
1 1
= B8 = s 5 99
3 88 — 17 1
11-17 | -6
—6 | —6 TRUE

The solution is 5.

78. 6

79. 5+42(z—3) = 2[5—4(z + 2)]
5+2z—6=2[5—4z — 8|
2 — 1 = 2[4z — 3]
2c—1=-8x-6
2r—1+1=-8x—-6+1

2c = -8z —5
2z +8x = —8x — 5+ 8z
10x = =5
1 1
ek
T
Check:

5+2(x—3) f2[5—4(x+2)]
sv2(~1-1) zafs-a( -1 +2)]
o) o)

5-7 | 2[5- 6]
=2 | 2=1]
~9 | -2 TRUE

1
The solution is —3

23
80.§
81. dr —2x — 2 = 2z
2 —-2=2zx
—2r+2x—-2=-2x+ 2z
-2=0

Since the original equation is equivalent to the false
equation —2 = 0, there is no solution. The solution
set is ). The equation is a contradiction.

82. All real numbers; identity

83. 249z =30Bx+1) -1
249z =9x+3-1
249z =942

2492 —-92 =924+2—-9z
2=2

The original equation is equivalent to the equation
2 = 2 which is true for all real numbers. Thus the so-
lution set is the set of all real numbers. The equation
is an identity.

84. 0; contradiction

85. -8 +5=5-10z
—8x+5-5=5—-10c—-5
—8x = —10z
—8x 4+ 10z = —10x + 10z
20 =0
1
§~2m:§~0
z=0

There is one solution, 0. The equation is conditional.
86. All real numbers; identity

87. 2{9-3[-2z—4]} = 12z + 42
2{9 + 6z + 12} = 12z + 42
2{21 + 6z} = 12z + 42
42 + 12z = 12x + 42
42 412z — 12z = 122 + 42 — 12z
42 = 42

The original equation is equivalent to the equation
42 = 42, which is true for all real numbers. Thus
the solution set is the set of all real numbers. The
equation is an identity.

88. 0; conditional

89. Roster notation: List the numbers in the set.
{1,2,3,4,5,6,7,8,9}

Set-builder notation: Specify the conditions under
which a number is in the set.

{z|z is a positive integer less than 10}

90. {-8,-7,—6,-5,—4,-3,-2,—1};

{z|z is a negative integer greater than —9}

91. <@>
92. <@>
93. <@>
94. <@>



12 Chapter 1: Algebra and Problem Solving
95. 4.93z — 17.898 = —1.65z — 42.454 First number plus second number is 65.
5.88x — 17.898 = —42.454 r l I l 61
5.88z = —24.556 z + 47 =0
T = _M_ 2. Let z and z + 11 represent the numbers;
5.88
11) = 83
z ~ —4.176190476 &+ (ot 11)
The check is left to the student. The solution is . Familiarize. Since the sidewalk’s speed is 5 ft/sec
approximately —4.176190476. and Alida’s walking speed is 4 ft/sec, Alida will move
at a speed of 5+4, or 9 ft/sec on the sidewalk. Let
96. 0.2140224 t = the time, in seconds, it takes her to walk the
- " . % 72— 1))} . length of the moving sidewalk, 300 ft.
. z-{3z—[2¢— 5z — (Tz — =z+
z— {32 —[22 - (52— (T 2l Translate. We will use the formula Distance =
z—{3z—2r— 5z —Tz+1)|]} =z +7 Speed x Time.
e-{3z -2z (-2z+ 1))} =z +7 Distance = Speed x Time
z—{3z-[2r+2z-1]} =z +7 | l T l l
z—{3z—[dz -1} =z+7 300 = 9 x t
z—{3z—dz+1}=x+7
Let t = the time, in hours, it will take Fran to swim
—{-z+1l}=z+7 : ) ’
s—{-s 1} =s+ 1.8 km upriver; (5 — 2.3)¢ = 1.8, or 2.7t = 1.8
zT+zx—-1=z+7
Qr—1=zx+7 . Familiarize. The plane’s speed, traveling into the
r—1=17 wind, is the difference between its speed in still
air and the speed of the head wind: 390 — 65, or
z=38 325 km/h. Let t = the time, in hours, it will take
The check is left to the student. The solution is 8. the plane to travel 725 km into the wind.
98. 4 Translate. We will use the formula Distance =
: Speed x Time.
99. 17-3{5+2[z-2]}+4{z—-3(x+7)}= Distance = Speed x Time
9{z +3[2 + 3(4 — 2]} L] ||
17 - 3{5+2z — 4} + 4{z — 3z — 21} = 725 = 325 x t
9fe + B[2 + 12— B4} . Let t = the boat’s time, in hours; (14 + 7)t = 56, or
17-3{1+2z}+4{—2z—21} = 9{z+3[14—3z]} 21t = 56
17— 3 — 6z — 8z — 84 = 9{z + 42 — 9z} Pl - N .
_ . Familiarize. ere are three angle measures in-
—14z - 70 = 9{-8 + 42} volved, and we want to find all three. We can let z
—14z — 70 = -T2z + 378 represent the smallest angle measure and note that
58z — 70 = 378 the second is one more than z and the third is one
more than the second, or two more than x. We also
58z = 448
note that the sum of the three angle measures must
448 224 be 180°
ST o
294 Translate. The three angle measures are z, = + 1,
The check is left to the student. The solution is 29 and z + 2. We translate to an equation:
First plus second plus third is 180°.
19
100. 35 LT LT ]

Exercise Set 1.4

1.

Familiarize. There are two numbers involved, and
we want to find both of them. We can let z represent
the first number and note that the second number is
7 more than the first. Also, the sum of the numbers
is 65.

Translate. The second number can be named z + 7.
We translate to an equation:

T + (z+1) + (z+2) = 180

. Let w = the wholesale price; 1.5w + 0.25 = 1.99

. Familiarize. Let t represent the time required.

Note that the plane must climb 29,000 — 8000, or
21,000 ft.

Translate.
Speed x Time
——

|

3500 x ¢t

Distance
N e

l

21,000

I



Exercise Set 1.4

13

10.

11.

12.

13.

14.

15.

16.

17.

2
Let z represent the longer length; =z + §x =10

Familiarize. Let z represent the measure of the
second angle. Then the first angle is three times z,
and the third is 12° less than twice z. The sum of
the three angle measures is 180°.

Translate. The first angle is 3z, the second is z,
and the third is 2z — 12. Translate to an equation:
third is 180°.

L]

(2z—12) = 180

First plus second plus

!

3z + &z +

Let z represent the measure of the second angle;
4z +x+ (20 +5) =180

Familiarize. Note that each odd integer is two more
than the one preceding it. If we let n represent the
first odd integer, then the second is 2 more than the
first and the third is 2 more than the second, or 4
more than the first. We are told that the sum of the
first, twice the second, and three times the third is
70.

Translate. The three odd integers are n, n+2, and
n + 4. Translate to an equation.

two times three times

&rﬁy pliR second plus third 1909,
LT T ]
n 4+  2n+2) + 3(n+4) =170

Let z represent the first number; 2z + 3(z +2) = 76

Familiarize. Recall that the perimeter of a square
is 4 times the length of a side. Let s = the length of
a side of the smaller square. Then 2s = the length
of a side of the larger square. The sum of the two
perimeters is 100 cm.

Translate.

Perimeter of perimeter of
smaller square larger square

| T ]|

4s + 4-2s = 100

is 100 cm.

Let x represent the length of one piece;

2 2
x 100 — z
(z) ~ ( . ) + 144
Familiarize. If we let x represent the first number,
then the second is six less than 3 times z and the

third is two more than g of the second. The sum of

the three numbers is 172.

Translate.
First plus second plus

I T

T + 3z-6 +

thir is 172.

Ll

2
(33:—6) +2 = 172

wl

18.

19.

20.

21.

22,

23.

24.

25.

Let x represent the price of the least expensive set;
(z+20)+ (x+6-20) =z +12-20

Familiarize. After the next test there will be six
test scores. The average of the six scores is their
sum divided by 6. We let x represent the next test
score.

Translate.

The average of the six scores is 88.

l L]

93+89+72+80+96+x 88
= =

Let p = the population at the start of the three-year
period; 1.12(1.12)(1.12)p = 50,577

Familiarize. Let z = the unknown factor. Then
the product of the two numbers, 125, is represented
by 50z.

Translate.

The product is 125.

L]

50z = 125
Carry out. We solve the equation.
50z = 125
1
= —-125
* =50
5
=2, or25
z=gor

Check. If the other number is g, the product is

50 - g, or 125. Our answer checks.
State. The other number is g, or 2.5.

50.3

Familiarize. Let n = the number.
Translate. We reword the problem.
A number plus 16.8 is 173.5.

!

n + 16.8 = 173.5
Carry out. We solve the equation.
n+16.8 = 173.5
173.5 - 16.8
n = 156.7

Check. Since 156.7 + 16.8 = 173.5, our answer
checks.

State. The number is 156.7.

n

Il

320

Familiarize. Let y = the number.



