

Advances in ceramic matrix composites

Edited by I. M. Low

Woodhead Publishing Series in Composites Science and Engineering: Number 45

Advances in ceramic matrix composites

Edited by I. M. Low

Oxford

Cambridge Philadelphia

New Delhi

Published by Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ, UK www.woodheadpublishing.com www.woodheadpublishingonline.com

Woodhead Publishing, 1518 Walnut Street, Suite 1100, Philadelphia, PA 19102-3406, USA

Woodhead Publishing India Private Limited, 303, Vardaan House, 7/28 Ansari Road, Daryaganj, New Delhi – 110002, India www.woodheadpublishingindia.com

First published 2014, Woodhead Publishing Limited

© Woodhead Publishing Limited, 2014. The publisher has made every effort to ensure that permission for copyright material has been obtained by authors wishing to use such material. The authors and the publisher will be glad to hear from any copyright holder it has not been possible to contact.

The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited.

The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

Library of Congress Control Number: 2013948036

ISBN 978-0-85709-120-8 (print)
ISBN 978-0-85709-882-5 (online)
ISSN 2052-5281 Woodhead Publishing Series in Composites Science and Engineering (print)
ISSN 2052-529X Woodhead Publishing Series in Composites Science and Engineering (online)

The publisher's policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elemental chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

Typeset by RefineCatch Limited, Bungay, Suffolk Printed by Lightning Source

Advances in ceramic matrix composites

Related titles:

Ceramic nanocomposites (ISBN 978-0-85709-338-7)

Non-destructive evaluation (NDE) of polymer matrix composites (ISBN 978-0-85709-344-8)

Environmentally friendly polymer nanocomposites (ISBN 978-0-85709-777-4)

Details of these books and a complete list of titles from Woodhead Publishing can be obtained by:

- visiting our web site at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodheadpublishing.com; fax: +44 (0) 1223 832819; tel.: +44 (0) 1223 499140 ext. 130; address: Woodhead Publishing Limited, 80, High Street, Sawston, Cambridge CB22 3HJ, UK)
- in North America, contacting our US office (e-mail: usmarketing@woodheadpublishing.com; tel.: (215) 928 9112; address: Woodhead Publishing, 1518 Walnut Street, Suite 1100, Philadelphia, PA 19102-3406, USA)

If you would like e-versions of our content, please visit our online platform: www. woodheadpublishingonline.com. Please recommend it to your librarian so that everyone in your institution can benefit from the wealth of content on the site.

We are always happy to receive suggestions for new books from potential editors. To enquire about contributing to our Composites Science and Engineering series, please send your name, contact address and details of the topic/s you are interested in to gwen.jones@woodheadpublishing.com. We look forward to hearing from you.

The team responsible for publishing this book:

Commissioning Editor: Francis Dodds Publications Coordinator: Lucy Beg

Project Editor: Elizabeth Moss

Editorial and Production Manager: Mary Campbell

Production Editor: Mandy Kingsmill Project Manager: Annette Wiseman, RCL

Copyeditor: Jonathan Webley Proofreader: Simon Webber Cover Designer: Terry Callanan

Contributor contact details

(* = main contact)

Editor and Chapter 1

I. M. Low Department of Imaging and Applied Physics Curtin University GPO Box U1987 Perth, WA 6845, Australia

E-mail: j.low@curtin.edu.au

Chapter 2

Donghai Ding
College of Materials and Mineral
Resources
Xi'an University of Architecture
and Technology
Xi'an
Shaanxi 710055, P. R. China

E-mail: 290610692@qq.com

Chapter 3

Saikat Maitra
Department of Ceramic Technology
Govt College of Engineering and
Ceramic Technology
73, A.C. Banerjee Lane
Kolkata-700010, India

E-mail: saikatmaitra@gcect.ac.in; maitrasaikat@rediffmail.com

Chapter 4

Dušan Galusek*, Jaroslav Sedláček, Róbert Klement and Peter Švančárek VILA – Joint Glass Centre of the IIC SAS, TnU AD and FChFT STU Študentská 2 911 50 Trenčín, Slovak Republic

E-mail: dusan.galusek@tnuni.sk

Chapter 5

Dmitri Kopeliovich SubsTech (Substances & Technologies) 6 Shoval Street Meitar, 85025, Israel

E-mail: dmitrikop@gmail.com

Chapter 6

D. Asmi*
Department of Physics
Faculty of Mathematics and Natural
Sciences
University of Lampung
Jl. Prof Sumantri Brojonegoro No1
Gedung Meneng Bandar Lampung
35145, Indonesia

E-mail: asmid@unila.ac.id; dwiasmi82@yahoo.com

 I. M. Low
 Department of Imaging and Applied Physics
 Curtin University
 GPO Box U1987
 Perth, WA 6845, Australia

E-mail: j.low@curtin.edu.au

Chapter 7

Dusan Bucevac
Materials Science Laboratory
Vinča Institute of Nuclear
Sciences
Belgrade University
11001 Belgrade, Serbia

E-mail: bucevac@vinca.rs

Chapter 8

Chunfeng Hu*, Fangzhi Li,
Dong Qu, Qian Wang and
Rongjun Xie
Ningbo Institute of Material
Technology and Engineering
Chinese Academy of Sciences
Ningbo 315201, P. R. China

E-mail: hucf@nimte.ac.cn

Haibin Zhang and Shuming Peng China Academy of Engineering Physics Mianyang 621900, P. R. China

Yiwang Bao Key State Laboratory of Green Building Materials China Building Materials Academy Beijing 100024, P. R. China Yanchun Zhou Aerospace Research Institute of Materials and Processing Technology Beijing 100076, P. R. China

Chapter 9

Shigen G. Zhu* and Haixia X. Qu 3056, 4# College of Mechanical Engineering Engineering Research Center of Advanced Textile Machinery Ministry of Education Donghua University 2999 North Renmin Rd Songjiang Distract Shanghai 201620, P. R. China

E-mail: sgzhu@dhu.edu.cn; qhx4001@163.com

Chenxin X. Ouyang
College of Material Science and
Engineering
Donghua University
Shanghai 201620, P. R. China

Chapter 10

Jow-Lay Huang* and Pramoda K. Nayak Ceramic & Coating Laboratory Department of Materials Science and Engineering National Cheng Kung University No. 1, University Road, Tainan City 70101, Taiwan

E-mail: jlh888@mail.ncku.edu.tw

Agnès Smith* and Claire
Peyratout
Ecole Nationale Supérieure de
Céramique Industrielle
Groupe d'Etude des Matériaux
Hétérogènes
Centre Européen de la
Céramique
12, rue Atlantis
87068 Limoges cedex, France

E-mail: agnes.smith@unilim.fr; claire. peyratout@unilim.fr

Chapter 12

Zhenhai Xia* and Lili Li
Department of Materials Science
and Engineering
Department of Chemistry
University of North Texas
3940 N Elm St, Denton
TX 76203, USA

E-mail: Zhenhai.xia@unt.edu

Chapter 13

Andy H. Choi*
Dental Materials Science
Faculty of Dentistry
The University of Hong Kong,
P. R. China

and

School of Chemistry and Forensic Science Faculty of Science University of Technology Sydney, Australia

E-mail: ahchoi@hotmail.com

Greg Heness
School of Physics and Advanced
Materials
Faculty of Science
University of Technology
Sydney, Australia

Besim Ben-Nissan School of Chemistry and Forensic Science Faculty of Science University of Technology Sydney, Australia

Chapter 14

Chaohui Zhang
School of Mechanical,
Electronic and Control
Engineering
Beijing Jiaotong University,
P. R. China

E-mail: zhhzhang@bjtu.edu.cn

Chapter 15

Wei Kong Pang*
Australian Nuclear Science and
Technology Organisation
Locked Bag 2001
Kirrawee DC
NSW 2232
Australia

E-mail: weikong.pang@ansto.gov.au; pwk1980@yahoo.com; 12923241@student.curtin.edu.au

I. M. Low Department of Imaging and Applied Physics Curtin University GPO Box U1987 Perth, WA 6845, Australia

F. Rebillat
University of Sciences and
Technology of Bordeaux
Laboratoire des composites
thermostructuraux
(LCTS)
Domaine universitaire
3 allée de la Boetie
33600 Pessac, France

E-mail: rebillat@lcts.u-bordeaux1.fr

Chapter 17

Toshio Osada*
Strength Design Group,
Structural Materials
Unit, Research Center
for Strategic
Materials
National Institute for Materials
Science
1-2-1 Sengen, Tsukuba
Ibaraki 305-0047, Japan

E-mail: OSADA.Toshio@nims.go.jp

Wataru Nakao, Koji Takahashi and Kotoji Ando Department of Materials Engineering Yokohama National University 79-5, Tokiwadai Hodogaya-ku Yokohama 240-8501, Japan

Chapter 18

K. J. D. MacKenzie* and
M. Welter
MacDiarmid Institute for
Advanced Materials and
Nanotechnology
School of Chemical and Physical
Sciences
Victoria University of
Wellington
PO Box 600
Wellington, New Zealand

E-mail: kenneth.mackenzie@vuw.ac.nz

Chapter 19

Shaikh Faiz Uddin Ahmed Department of Civil Engineering Curtin University Perth, Australia

E-mail: S.Ahmed@curtin.edu.au

Chapter 20

Yutai Katoh Materials Science and Technology Division Oak Ridge National Laboratory PO Box 2008, Oak Ridge TN 37831-6138, USA

E-mail: katohy@ornl.gov

Salma M. Naga National Research Center Ceramics Department El-Tahrir str. 12622, Dokki, Cairo, Egypt

E-mail: salmanaga@yahoo.com

Chapter 22

Jun Zhao
Key Laboratory of High
Efficiency and Clean
Mechanical Manufacture
of MOE
School of Mechanical
Engineering
Shandong University
17923 Jingshi Road
Jinan 250061, P.R. China

E-mail: zhaojun@sdu.edu.cn

Chapter 23

Jianfeng Zhang*, Rong Tu and Takashi Goto Institute for Materials Research Tohoku University Katahira 2-1-1 Sendai 980-8577, Japan

E-mail: jfzhang@imr.tohoku.ac.jp

Chapter 24

Rosidah Alias
Advanced Physical Technologies
Laboratory
Telekom Malaysia Research &
Development Sdn Bhd
TM R&D Innovation Centre,
Lingkaran Teknokrat Timur
63000 Cyberjaya
Selangor, Malaysia

E-mail: rosidah@tmrnd.com.my

Chapter 25

Hany Hassanin* and Kyle Jiang School of Mechanical Engineering University of Birmingham Edgbaston Birmingham B15 2TT, UK

E-mail: h.s.s.hassanin@bham.ac.uk; k.jiang@bham.ac.uk

Chapter 26

Ling Yin*
School of Engineering & Physical
Sciences
James Cook University
Townsville
Queensland 4811, Australia

E-mail: Ling.yin@jcu.edu.au

Richard Stoll School of Medicine & Dentistry James Cook University Cairns Queensland 4870, Australia

Hesam Mirmohammadi Department of Restorative Dentistry School of Dentistry Isfahan University of Medical Sciences Isfahan, Iran

and

Department of Cardiology,
Endodontology and Pedodontology
Academic Centre for Dentistry
Amsterdam (ACTA)
Universiteit van Amsterdam and
Vrije Universiteit
Gustav Mahlerlaan 3004
1081 LA Amsterdam, The Netherlands

E-mail: hmirmoha@acta.nl

Chapter 28

Sarat K. Swain
Department of Chemistry
Veer Surendra Sai University of
Technology
Burla
Sambalpur-768018
Odisha, India

E-mail: swainsk2@yahoo.co.in

Woodhead Publishing Series in Composites Science and Engineering

- 1 Thermoplastic aromatic polymer composites F. N. Cogswell
- 2 Design and manufacture of composite structures G. C. Eckold
- 3 Handbook of polymer composites for engineers Edited by L. C. Hollaway
- 4 Optimisation of composite structures design A. Miravete
- 5 Short-fibre polymer composites Edited by S. K. De and J. R. White
- 6 Flow-induced alignment in composite materials Edited by T. D. Papthanasiou and D. C. Guell
- 7 Thermoset resins for composites Compiled by Technolex
- 8 Microstructural characterisation of fibre-reinforced composites Edited by J. Summerscales
- 9 **Composite materials** F. L. Matthews and R. D. Rawlings
- 10 **3-D textile reinforcements in composite materials** *Edited by A. Miravete*
- 11 Pultrusion for engineers Edited by T. Starr
- 12 Impact behaviour of fibre-reinforced composite materials and structures Edited by S. R. Reid and G. Zhou
- 13 Finite element modelling of composite materials and structures F. L. Matthews, G. A. O. Davies, D. Hitchings and C. Soutis
- 14 Mechanical testing of advanced fibre composites Edited by G. M. Hodgkinson
- 15 Integrated design and manufacture using fibre-reinforced polymeric composites
 - Edited by M. J. Owen and I. A. Jones
- 16 Fatigue in composites Edited by B. Harris
- 17 **Green composites** *Edited by C. Baillie*

Woodhead Publishing Series in Composites

18 Multi-scale modelling of composite material systems Edited by C. Soutis and P. W. R. Beaumont

Lightweight ballistic composites

Edited by A. Bhatnagar

XXII

20 Polymer nanocomposites

Y-W. Mai and Z-Z. Yu

21 Properties and performance of natural-fibre composite Edited by K. Pickering

22 Ageing of composites

Edited by R. Martin

23 Tribology of natural fiber polymer composites N. Chand and M. Fahim

24 Wood-polymer composites

Edited by K. O. Niska and M. Sain

25 **Delamination behaviour of composites** *Edited by S. Sridharan*

26 Science and engineering of short fibre reinforced polymer composites S-Y. Fu, B. Lauke and Y-M. Mai

27 Failure analysis and fractography of polymer composites E. S. Greenhalgh

28 Management, recycling and reuse of waste composites Edited by V. Goodship

29 Materials, design and manufacturing for lightweight vehicles Edited by P. K. Mallick

30 Fatigue life prediction of composites and composite structures Edited by A. P. Vassilopoulos

31 Physical properties and applications of polymer nanocomposites Edited by S. C. Tjong and Y-W. Mai

32 Creep and fatigue in polymer matrix composites Edited by R. M. Guedes

33 Interface engineering of natural fibre composites for maximum performance Edited by N. E. Zafeiropoulos

34 **Polymer-carbon nanotube composites** *Edited by T. McNally and P. Pötschke*

35 Non-crimp fabric composites: Manufacturing, properties and applications Edited by S. V. Lomov

36 Composite reinforcements for optimum performance Edited by P. Boisse

37 Polymer matrix composites and technology R. Wang, S. Zeng and Y. Zeng

38 Composite joints and connections Edited by P. Camanho and L. Tong

39 Machining technology for composite materials Edited by H. Hocheng

40 Failure mechanisms in polymer matrix composites Edited by P. Robinson, E. S. Greenhalgh and S. Pinho

41 Advances in polymer nanocomposites: Types and applications Edited by F. Gao

- 42 Manufacturing techniques for polymer matrix composites (PMCs)

 Edited by S. Advani and K-T. Hsiao
- 43 Non-destructive evaluation (NDE) of polymer matrix composites: Techniques and applications Edited by V. M. Karbhari
- 44 Environmentally friendly polymer nanocomposites: Types, processing and properties

 S. S. Ray
- 45 Advances in ceramic matrix composites Edited by I. M. Low
- 46 **Ceramic nanocomposites** *Edited by R. Banerjee and I. Manna*
- 47 Natural fibre composites: Materials, processes and properties Edited by A. Hodzic and R. Shanks
- 48 Residual stresses in composite materials Edited by M. M. Shokrieh
- 49 Health and environmental safety of nanomaterials: polymer nanocomposites and other materials containing nanoparticles

 Edited by J. Njuguna, K. Pielichowski and H. Zhu

Contents

	Contributor contact details Woodhead Publishing Series in Composites Science	xv
	and Engineering	xxi
1	Advances in ceramic matrix composites: an introduction I. M. Low, Curtin University, Australia	1
1.1	The importance of ceramic matrix composites	1
1.2	Novel material systems	2 3
1.3 1.4	Emerging processing techniques References	5
1.7	References	3
Part I	Types and processing	7
2	Processing, properties and applications of ceramic matrix composites, SiC _f /SiC: an overview D. DING, Xi'an University of Architecture and Technology, P. R. China	9
2.1 2.2	Introduction Novel interphase materials and new fabrication methods	9
	for traditional interphase materials	11
2.3	Novel matrix manufacturing processes	15
2.4	Nano-reinforcement	16
2.5	Dielectric properties and microwave-absorbing	
	applications	19
2.6	Conclusion and future trends	21
2.7	References	22
3	Nanoceramic matrix composites: types, processing and applications S. Maitra, Government College of Engineering and Ceramic Technology, India	27
3.1	Introduction	27

VI	Contents	
3.2	Nanostructured composite materials	28
3.3	Bulk ceramic nanocomposites	30
3.4	Nanoceramic composite coatings	37
3.5	Conclusion	40
3.6	References	40
3.0	1010101000	
4	Silicon carbide-containing alumina nanocomposites:	
	processing and properties	43
	D. GALUSEK, J. SEDLÁČEK, R. KLEMENT and P. ŠVANČÁREK,	
	Joint Glass Centre of the IIC SAS, TnU AD, FChFT STU	
	and RONA, j.s.c, Slovak Republic	
4.1	Introduction: current and new manufacturing methods	43
4.2	Silicon carbide-containing alumina nanocomposites	
	prepared by the hybrid technique	47
4.3	Optimising process parameters	49
4.4	Mechanical properties and wear resistance	68
4.5	Conclusion	73
4.6	Acknowledgements	74
4.7	References	75
_	A Learning to the control of a control of a control of	
5	Advances in the manufacture of ceramic matrix	70
	composites using infiltration techniques	79
	D. KOPELIOVICH, SubsTech, Israel	
5.1	Introduction	79
5.2	Classification of infiltration techniques	80
5.3	Reinforcing fibers	81
5.4	Interphases	83
5.5	Polymer infiltration and pyrolysis (PIP)	85
5.6	Chemical vapor infiltration (CVI)	88
5.7	Reactive melt infiltration (RMI)	91
5.8	Slurry infiltration	98
5.9	Sol-gel infiltration	100
5.10	Combined infiltration methods	102
5.11	Future trends	104
5.12	References	105
6	Manufacture of graded ceramic matrix composites	
O	using infiltration techniques	109
	D. Asmi, University of Lampung, Indonesia and I. M. Low,	103
	Curtin University, Australia	
6.1	Introduction	109
6.2	Processing and characterisation techniques	110
6.3	Microstructure and physical, thermal and	
0.5	mechanical properties	117
6.4	Conclusion	136

	Conten	its vii
6.5 6.6 6.7	Future trends Acknowledgments References	138 139 139
0.7	References	139
7	Heat treatment for strengthening silicon carbide ceramic matrix composites D. Bucevac, Institute of Nuclear Sciences Vinca, Serbia	141
7.1 7.2 7.3 7.4 7.5 7.6 7.7	Introduction SiC/TiB ₂ particulate composites Sintering SiC/TiB ₂ composites Fracture toughness Fracture strength Conclusion References	141 142 145 146 155 161
8	Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites C. Hu, F. Li, D. Qu, Q. Wang and R. Xie, Chinese Academy of Sciences, P. R. China, H. Zhang and S. Peng, China Academy of Engineering Physics, P. R. China, Y. Bao, China Building Materials Academy, P. R. China and Y. Zhou, Aerospace Research Institute of Materials and Processing Technology, P. R. China	164
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Introduction Direct hot pressing Hot isostatic pressing Future trends Conclusion Acknowledgements References	164 166 177 186 187 188
9	Hot pressing of tungsten carbide ceramic matrix composites S. G. Zhu, H. X. Qu and C. X. Ouyang, Donghua University, P. R. China	190
9.1	Introduction	190
9.2	Powder characterization	192
9.3	Thermal analysis and phase transformation during hot pressing of WC/Al ₂ O ₃ composites	195
9.4	Effects of Al ₂ O ₃ content on the microstructure and	193
	mechanical properties of WC/Al ₂ O ₃ composites	197
9.5	Hot pressing of WC/40 vol% Al ₂ O ₃ composites	204
9.6	Future trends	214
9.7	Conclusion	215
9.8	References	216