Selected Maierial from
Programming with Microsoft

Visual Basic 5.0

for windows.

with
Microsoft
Internet Explorer 4

Diane Zak

Gary B. Shelly
Thomas J. Cashman
Kurt A. Jordan

Selected Material from
Programming with Microsoft

Visual Basic 5.0
Jfor Windows.
with
Microsoft

Internet Explorer 4

Diane Zak
Gary B. Shelly
Thomas J. Cashman
Kurt A. Jordan

&@ COURSE TECHNOLOGY

<= ONE MAIN STREET
g SHELLY SOYR3E CAMBRIDGE MA 02142
_E CASHMAN an International Thomson Publishing company ~ 1(DP
= Srus.

CAMBRIDGE « ALBANY « BONN ¢ CINCINNATI « LONDON « MADRID « MELBOURNE
MEXICO CITY « NEW YORK « PARIS « SAN FRANCISCO « TOKYO « TORONTO « WASHINGTON

COPYRIGHT © 1998 by Course Technology
A Division of International Thomson Publishing Inc.

The ITP logo is a registered trademark under license.

Printed in the United States of America

For more information, contact Course Technology, One Main Street, Cambridge MA 02142, or
electronically at http://www.thomson.com/cti.html]

International Thomson Publishing Europe International Thomson Editores
Berkshire House 168-173 Campos Eliseos 385, Piso 7

High Holborn Col. Polanco

London, WC1V 7AA, England 11560 México D.F. México

Thomas Nelson Australia International Thomson Publishing Asia
102 Dodds Street 221 Henderson Road

South Melbourne 3205 #05-10 Henderson Building

Victoria, Australia Singapore 0315

Nelson Canada International Thomson Publishing Japan
1120 Birchmount Road Hirakawacho Kyowa Building, 3F
Scarborough, Ontario 2-2-1 Hirakawacho

Canada M1K 5G4 Chiyoda-ku, Tokyo 102, Japan
International Thomson Publishing GmbH International Thomson Publishing Southern Africa
Konigswinterer Strasse 418 Building 18, Constantia Park

53227 Bonn, Germany 240 Old Pretoria Road

Halfway House, 1685 South Africa

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or
used in any form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—without the written permission of
the publisher.

ISBN 0-7600-1120-6

The Adaptable Courseware Program consists of products and additions to existing Course Technology
products that are produced from camera-ready copy. Peer review, class testing, and accuracy are primarily
the responsibility of the author(s).

Tutorial 1
Tutorial 2
Tutorial 3
Tutorial 4

Tutorial 5

Project 1

Project 2

Project 3

Appendix A

Custom Contents

From Visual Basic 5.0

An Introduction to Visual Basic
Designing Applications
Using Variables and Constants
The Selection Structure
The Repetition Structure

From Internet Explorer 4

Introduction to Internet Explorer

Web Research Techniques and
Search Engines

Conversing Over the Internet

Integrating the Web and the
Windows Desktop

VB11

VB85

VB157

VB231

VB327

IE 1.1

IE 2.1

IE 3.1

IEA.1

lesson A

Questions

10.

11.

12

13.

14.

15.

16.

Command buttons in an interface should be

a. centered along the bottom of the screen

b. stacked in either the upper-left or lower-left corner of the screen

c. stacked in either the upper-right or lower-right corner of the screen
d. eitheraorb

e. eitheraorc

Usenomorethan __ command buttons on a screen.
a. five

b. four
c. seven
d. six
e. two

If more than one command button is used in an interface, the most commonly used
command button should be placed

a. first

b. in the middle

c. last

d. eitheraorc

Which of the following statements is false?

a. A command button’s caption should appear on one line.

b. A command button’s caption should be from one to three words only.

c. A command button’s caption should be entered using book title capitalization.
d. A command button’s caption should end with a colon (:).

The labels for controls (other than command buttons) should be entered using

a. book title capitalization
b. sentence capitalization
c. eitheraorb

Which of the following statements is false?

a. Labels for controls (other than command buttons) should be aligned on the left.

b. Labels for controls (other than command buttons) should be positioned either
above or to the left of the control.

c. Labels for controls (other than command buttons) should be entered using book
title capitalization.

d. Labels for controls (other than command buttons) should end with a colon (:).

Use — for labels, which means you capitalize only the first word and
any words that are customarily capitalized.

a. book title capitalization

b. sentence capitalization

Use _— for command button captions, which means you capitalize the
first letter in each word, except for articles, conjunctions, and prepositions that do not
occur at either the beginning or the end of the caption.

a. book title capitalization

b. sentence capitalization

Listed below are the four steps you should follow when planning an OOED applica-
tion. Put them in the proper order by placing a number (1 to 4) on the line to the left
of the step.

Identify the objects to which you will assign those tasks.

Draw a sketch of the user interface.

Identify the tasks the application needs to perform.
Identify the events required to trigger an object into performing its assigned
tasks.

Designing Applications tutorial 2

17. Listed below are the five steps you should follow when creating an OOED application. Put
them in the proper order by placing a number (1 to 5) on the line to the left of the step.
Test and debug the application.
Build the user interface.
Code the application.
Assemble the documentation.
Plan the application.

995 E X ER C1 S E S

1. In this exercise, you will prepare a TOE chart and create two sketches of the applica-
tion’s user interface.

Scenario: Sarah Brimley is the accountant at Paper Products. The salespeople at Paper

Products are paid a commission, which is a percentage of the sales they make. The cur-

rent commission rate is 10%. (In other words, if you have sales totaling $2,000, your

commission is $200.) Sarah wants you to create an application that will compute the

commission after she enters the salesperson’s name, territory number, and sales. She

also wants to print this information.

a. Prepare a TOE chart ordered by task.

b. Rearrange the TOE chart created in step a so that it is ordered by object.

c. Draw two sketches of the user interface—one using a horizontal arrangement and
the other using a vertical arrangement.

2. In this exercise, you will prepare a TOE chart and create two sketches of the applica-
tion’s user interface.

Scenario: RM Sales divides its sales territory into four regions: North, South, East, and

West. Robert Gonzales, the sales manager, wants an application in which he can enter

the current year’s sales for each region and the projected increase (expressed as a per-

centage) in sales for each region. He then wants the application to compute the follow-

ing year’s projected sales for each region. (For example, if Robert enters 10000 as the

current sales for the South region, and then enters a 10% projected increase, the appli-

cation should display 11000 as next year’s projected sales.) He also wants to print a

report showing the four current year’s sales, the four projected sales percentages, and

the four projected sales amounts.

a. Prepare a TOE chart ordered by task.

b. Rearrange the TOE chart created in step a so that it is ordered by object.

c. Draw two sketches of the user interface—one using a horizontal arrangement and
the other using a vertical arrangement.

3. In this exercise, you will modify an existing application’s user interface so that the

interface follows the GUI design tips covered in Tutorial 2’s Lesson A.

a. Open the La3 (La3.vbp) project, which is located in the Tut02 folder on your
Student Disk.

b. Save the form and the project as La3Done in the Tut02 folder on your Student Disk.
Lay out and organize the interface so it follows all of the GUI design tips specified in
Lesson A. (Refer to the Layout and Organization of Your Interface GUI design tips
at the end of Lesson A.)

d. Run the application, then click the Print Time Report button to print the interface.
(The Print Time Report button contains the code to print the interface. If the labels
in the printout do not appear the same as on the screen, you may need to select a
different font for the labels. Exit the application, select the labels, then use the Font
property to change the Font; try the Arial font.)

e. Click the Exit button to end the application. (The Exit button contains the code to
end the application.)

f. Submit the printout from step d.

In this lesson you will Iearn
® Build the user interface using your
TOE chart and sketch

@ Follow the Windows standards
regarding the use of graphics, color,
and fonts

m Apply the BackStyle, BorderStyle,
and Appearance properties

m Add a text box control to a form

@ Use the Tabindex property to
control the focus

m Lock the controls on the form
m Assign access keys to the controls

tips
0.............?.‘
» Another way to make a
form the active window is
to click its name in the
Project window, then click

the Project window's View
Object button.

Building the User
Interface

Preparing to Create the User Interface

In Lesson A you completed the first of the five steps involved in creating an
OOED application (plan the application). You are now ready to tackle the second
step (build the user interface). You use the TOE chart and sketch you created in
the planning step as guides when building the interface, which involves placing the
appropriate controls on the form and setting the applicable properties of those
controls. Recall that a property controls the appearance and behavior of the
objects included in the interface, such as the object’s font, size, and so on. Some
programmers create the entire interface before setting the properties of each
object; other programmers change the properties of each object as it is added to
the form. Either way will work, so it’s really just a matter of preference.

To save you time, your Student Disk contains a partially completed applica-
tion for Skate-Away Sales. When you open the application, you will notice that
most of the user interface has been created and most of the properties have been
set. One control, however, is missing from the form: a text box control. You’ll
add the missing control later in this lesson. First open the project and save it under
a different name so that the original files remain intact in case you want to prac-
tice this lesson again.

To open the partially completed project, then save the files under a new name:

1 Start Visual Basic, if necessary, and make sure your Student Disk is in the
- appropriate drive.

2 Open the T2case (T2case. vbp) file, which is located in the Tut02 folder on
your Student Disk. Click the form’s title bar to make it the active window.

'3 Use the Save T2CASE.FRM As option on the File menu to save the form as

IbOrder, then use the Save Project As option on the File menu to save the
project as IbOrder.

‘ Flgure 2-14 identifies the controls already included in the application. (You
~ won’t see the names of the controls on your screen. The names are included
" in Figure 2-14 for your reference only.)

frmOrder

cmdExit

cmdPrint

cmdCalc

cmdClear

Designing Applications tutorial 2

; Skéte—ﬁuwé} .S..;ilés

Notice that Figure 2-14 shows only the names of those controls whose names
were changed from their default values. Only the form and objects that will con-
tain code or objects that will be referred to in code need to have their names
changed to more meaningful ones.

The user interface shown in Figure 2-14 resembles the sketch shown in Lesson
A’s Figure 2-12. Recall that that sketch was created using the guidelines you learned
in Lesson A. For example, the information is arranged vertically, with the most
important information located in the upper-left corner of the screen. The command
buttons are centered along the bottom of the screen, with the most commonly used
button positioned first. The command buttons contain meaningful captions, which
are entered using book title capitalization. Each caption appears on one line, and no
caption exceeds the three-word limit. The labels identifying the controls other than
the command buttons are left-aligned and positioned to the left of their respective
controls; each uses sentence capitalization and each ends with a colon.

Notice that the labels and controls are aligned wherever possible to minimize
the number of different margins appearing in the user interface. You can use the
dots that Visual Basic displays on the form during design time to help you align the
various controls in the interface. When positioning the controls, be sure to maintain
a consistent margin from the edge of the window; two or three dots is
recommended. As illustrated in Figure 2-14, related controls are typically placed on
succeeding dots. For example, notice that the top of the txtAddress control is
placed on the horizontal line of dots found immediately below the txtName con-
trol. Also notice that the left edge of the Print Order command button is placed on
the vertical line of dots found to the immediate right of the Calculate Order com-
mand button. (Controls that are not part of any logical grouping may be positioned
from two to four dots away from other controls.)

VB 106 lesson B

Tips

<
o
@
]
Q

Tips

Adding Graphics

* The human eye is attracted
to pictures before text, so
include a graphic only if it is
necessary to do so. If the
graphic is used solely for
aesthetics, use a small
graphic and place it in a
location that will not dis-
tract the user.

Preparing to Create the User Interface

Always size the command buttons in the interface relative to each other.
When the command buttons are centered on the bottom of the screen, as they are
in this interface, all the buttons should be the same height; their widths, however,
may vary if necessary. If the command buttons are stacked in either the upper-
right or lower-right corner of the screen, on the other hand, all the buttons should
be the same height and the same width.

When building the user interface, keep in mind that you want to create a
screen that no one notices. Snazzy interfaces may get “oohs” and “aahs” during
their initial use, but they become tiresome after a while. The most important point
to remember is that the interface should not distract the user from doing his or her
work. Unfortunately, it’s difficult for many application developers to refrain from
using the many different colors, fonts, and graphics available in Visual Basic; actu-
ally, using these elements isn’t the problem—overusing them is. So that you don’t
overload your user interfaces with too much color, too many fonts, and too many
graphics, the next three sections will give you some guidelines to follow regarding
these elements. Consider the graphics first.

Placing and Sizing Design Elements
* Maintain a consistent margin of two or three dots from the edge of the window.

* Position related controls on succeeding dots. Controls that are not part of any logical
grouping may be positioned from two to four dots away from other controls.

* Command buttons in the user interface should be sized relative to each other. If
the command buttons are centered on the bottom of the screen, then each button
should be the same height; their widths, however, may vary. If the command but-
tons are stacked in either the upper-right or lower-right corner of the screen, then
each should be the same height and the same width.

* Try to create a user interface that no one notices.

Including Graphics in the User Interface

The human eye is attracted to pictures before text, so include a graphic only if it is
necessary to do so. You can use a graphic, for example, to either emphasize or
clarify a portion of the screen. You can also use a graphic for aesthetic purposes,
as long as the graphic is small and as long as it is placed in a location that does
not distract the user. The small graphic in the Skate-Away Sales interface, for
example, is included for aesthetics only. The graphic is purposely located in the
upper-left corner of the interface, which is where you want the user’s eye to be
drawn first anyway. The graphic adds a personal touch to the Skate-Away Sales
order form without being distracting to the user.

In the next section you will learn some guidelines pertaining to the use of dif-
ferent fonts in the interface.

Including Different Fonts in the User Interface

As you learned in Tutorial 1, you can change the type of font used to display the
text in an object, as well as the style and size of the font. Recall that Courier and
MS Sans Serif are examples of font types; regular, bold, and italic are examples of
font styles; and 8, 10, and 18 points are examples of font sizes. The default font

Design Tips

Designing Applications tutorial 2

used for interface elements in Windows is MS Sans Serif 8-point. A point, you
may remember, is 1/72 of an inch; so each character in an 8-point font is 1/9 of an
inch. You can use either 8, 10, or 12 point fonts for the elements in the user inter-
face, but be sure to limit the number of font sizes used to either one or two. The
Skate-Away Sales application uses two font sizes: 10 point and 12 point. The
heading at the top of the interface is in 12 point; all of the other labels and cap-
tions are in 10 point.

Some fonts are serif, and some are sans serif. A serif is a light cross stroke that
appears at the top or bottom of a character. The characters in a serif font have the
light strokes, whereas the characters in a sans serif font do not. (“Sans” is a
French word meaning “without.”) Books use serif fonts because those fonts are
easier to read on the printed page. Sans serif fonts, on the other hand, are easier to
read on the screen, so use a sans serif font for the text in the user interface. You
should use only one font type for all of the text in the interface. Avoid using italics
and underlining because both make text difficult to read. The Skate-Away Sales
interface uses the default MS Sans Serif font.

Selecting Appropriate Font Style and Size

e Use 8, 10, or 12 point fonts for the elements in the user interface.

¢ Limit the number of font sizes used to either one or two.

* Use a sans serif font for the text in the interface.

* Use only one font type for all of the text in the interface.

* Avoid using italics and underlining because both make text difficult to read.

In addition to overusing graphics and fonts, many application developers
make the mistake of using either too much color or too many different colors in
the user interface. In the next section you will learn some guidelines pertaining to
the use of color.

Including Color in the User Interface

Just as the human eye is attracted to graphics before text, it is also attracted to
color before black and white, so use color sparingly. It is a good practice to build
the interface using black, white, and gray first, then add color only if you have a
good reason to do so. Keep the following four points in mind when deciding
whether to include color in the interface:

1. Some users will be working on monochrome monitors.

2. Many people have some form of either color-blindness or color confusion,

so they will have trouble distinguishing colors.
3. Color is very subjective; what’s a pretty color to you may be hideous to
someone else.

4. A color may have a different meaning in a different culture.

It is usually best to follow the Windows standard of using black text on either
a white, off-white, or light gray background. The Skate-Away Sales interface, for
example, displays black text on a light gray background. If you want to add some
color to the interface, you can also use black text on either a pale blue or a pale
yellow background. Because dark text on a light background is the easiest to read,
never use a dark color for the background or a light color for the text; a dark
background is hard on the eyes, and light-colored text can appear blurry.

If you are going to include color in the interface, limit the number of colors to
three, not including white, black, and gray. Be sure that the colors you choose
complement each other.

VB 108 lesson B Preparing to Create the User Interface

Although color can be used to identify an important element in the interface,
you should never use it as the only means of identification. In the Skate-Away
Sales application, for example, the colors blue and yellow help the salesperson
quickly identify where to enter the order for blue skateboards and where to enter
the order for yellow skateboards. Notice, however, that color is not the only
means of identifying those areas in the interface; the labels to the left of the con-
trols also tell the user where to enter the orders for blue and yellow skateboards.

Selecting Appropriate Colors

* The human eye is attracted to color before black and white. Build the interface
using black, white, and gray first, then add color only if you have a good reason to
do so.

e Use either white, off-white, or light gray for an application’s background, and
black for the text. You can also use black text on either a pale blue or a pale yel-
low background. Dark text on a light background is the easiest to read.

* Never use a dark color for the background or a light color for the text; a dark
background is hard on the eyes, and light-colored text can appear blurry.

¢ Limit the number of colors to three, not including white, black, and gray. The col-
ors you choose should complement each other.

v

9-
=
c

<)
0
Q

* Never use color as the only means of identification for an element in the user
interface.

Now complete the user interface for the Skate-Away Sales application. First
see what the interface looks like with a white background instead of a gray one.

. tips

’ Another way to display

the Properties window for
the form is to right-click an
empty area of the form,
then select Properties from
the popup menu. You can
also click the Properties
Window button on the
Standard toolbar.

The BackStyle Property

Recall from Tutorial 1 that the BackColor property determines an object’s back-
ground color. The default background color for forms and label controls is gray.
Because each form and each label control can have its own BackColor setting,
changing the background color of the form does not change the background color
of the label controls on that form. You can match the color of a label control to
the background color of the form by setting the label control’s BackStyle property.

A label control’s BackStyle property determines whether the label is transpar-
ent or opaque. The default setting is 1-Opaque, which means that the color value
stored in the control’s BackColor property fills the control and obscures any color
behind it—in this case, the gray in the label controls obscures the white back-
ground of the form. When a control’s BackStyle property is set to 0-Transparent,

Designing Applications tutorial 2 VB 109

Visual Basic ignores the setting in the control’s BackColor property; instead,
Visual Basic allows you to see through the control. In most cases it is more effi-
cient to change the BackStyle property of the label controls, instead of their
BackColor property; then, if you want to experiment with the background color
of the form, you won’t have to change the BackColor property of the label con-
trols each time to match the form. Observe how this works by changing the
BackStyle property for the label controls to 0-Transparent.

Before you set the BackStyle property for the IblTboards and IblTprice con-
trols, you will change their BorderStyle property and their Appearance property.

The BorderStyle and Appearance Properties

As you learned in Tutorial 1, the BorderStyle property determines the style of the
object’s border. The BorderStyle property for a label control can be either 0-None,
which is the default, or 1-Fixed Single. The 1-Fixed Single setting surrounds the
label control with a thin line, so it looks similar in appearance to a text box. A
control’s Appearance property, on the other hand, determines if the control
appears flat (0-Flat) or three-dimensional (1-3D) on the screen. Although the
default setting of a label control’s Appearance property is 1-3D, you will not see
the three-dimensional effect unless you set the label control’s BorderStyle property
to 1-Fixed Single. You will change the BorderStyle property of the IbITboards and
IblTprice controls to 1-Fixed Single, so that the label controls will have a border.
You will then change their Appearance property to 0-Flat because, in Windows
applications, controls that contain data that the user is not allowed to edit do not
typically appear three-dimensional. The last change you will make to the
IblITboards and 1blTprice controls is to change their BackStyle property to
0-Transparent.

lesson B Adding a Text Box Control to the Form

Now continue building the interface.

Setting the Text Property

Recall that most of Skate-Away’s customers are in Illinois. Instead of having the
salesperson enter IL in the txtState control for each order, it would be more effi-
cient to have IL appear, automatically, in the state text box when the application
is run. If the user needs to change the state entry while the application is running,
he or she can simply click the State text box, then delete the current entry and
retype the new one. You can display IL in the txtState control by setting that con-
trol’s Text property to IL. Do that now.

Notice that the text box control in which the user enters the city is missing
from the interface. You will add that control next.

Adding a Text Box Control to the Form

A text box control provides an area in the form where the user can enter data.
Add the missing text box control to the form and then set its properties.

double-click here to

highlight Text1 text

Designing Applications tutorial 2

e text box is the current setting of this control’s
for a text box is similar to the Caption prop-
properties manage the text shown inside their
- you don’t want the Text1 text to appear when the
un, you will delete the contents of this control’s Text property.

e me)erﬁéé'wm ow. Double-click Text in the Properties list.
asic highlights the Text1 text in the Settings box, as shown in
s '

Textl TextBox

15 Text property highlighted in Settings box

LP? If the Text1 text is not highlighted in the Settings box, double-click
Text property again until the Text1 text is highlighted. You can also drag
ne Settings box to highlight the Text1 text.

s the Delete key, then press the Enter key to remove the highlighted
e text box is now empty. ‘
e following two properties for this text box control:

txtCity (“txt” stands for text box)
10 points

HELP? Recall that the Name property is listed first on the Alphabetic tab in
tt perties window; it’s listed in the Misc category on the Categorized tab.

Drag the txtClty control to a location immediately below the txtAddress con-
, then drag the txtCity control’s right border until the control is as wide as
txtAddress control. The correct location and size are shown in Figure 2-16.

correct size and
placement of the
txtCity control

Adding a Text Box Control to the Form

Skate-Away Sales

tips
......I.......EQ.
’ The easiest way to save a
project using its current
name is to click the Save
Project button on the
Standard toolbar. The Save
Project button will save
any file in the project that

has been changed since
the last time it was saved.

save and run the project to see if it is working correctly.
ve and run the project. An insertion point appears in the txtName control.

bgy the txtName control has the focus, which means that the control is
to receive input from you. Try this next.

T 'pe Sport Warehouse as the customer name. Notice that a text box dis-

plays the information it receives from you. The information is recorded in

e text box’s Text property. In this case, for example, the information is
recorded in the Text property of the txtName control.

In Windows applications, you can move the focus from one control to another
ressing the Tab key.

the Tab key to move the focus to the txtAddress control, then type

; entry is next.
Press the Tab key to move the focus to the txtCity control. Notice that the
focus skips the txtCity control and moves to the txtState control.

- Stop the application and think about why this happened. The End statement
‘has already been entered in the Exit button’s Click event procedure.

10 Click the Exit button to end the application. The application ends, and
Visual Basic returns to the design screen.

Designing Applications tutorial 2

Controlling the Focus with the Tabindex Property

The TablIndex property determines the order in which a control receives the focus
when the user is using the Tab key to tab through the application. Not all controls
have a Tablndex property; Menu, Timer, CommonDialog, Data, Image, Line, and
Shape controls do not. When you add a control that has a TabIndex property to a
form, Visual Basic sets the control’s TabIndex property to a number representing the
order in which that control was added to the form. Keep in mind that when assigning
these numbers Visual Basic starts counting at 0 (zero). In other words, the TabIndex
property for the first control added to a form is 0 (zero), the TabIndex property for
the second control is 1, and so on. Visual Basic uses the TabIndex property to deter-
mine the Tab order for the controls. To get a better idea of how this works, check the
Tablndex property for the txtAddress, txtState, and txtCity controls.

To view the TabIndex property:

1 Click the txtAddress control, then click Tablndex in the Properties list.
Notice that Visual Basic set the TabIndex property to 13. A TabIndex prop-
erty of 13 means that this was the fourteenth control added to the form.

Now look at the TabIndex property for the txtState control.

HELP? If the Tabindex property is not 13, you might have selected the
Address: label control instead of the txtAddress text box. Click the txtAddress
text box, then repeat Step 1.

2 Click the Object box list arrow, which is located below the Properties window’s
title bar, then click txtState in the list. Notice that the txtState control’s
Tablndex property is set to 14. A control with a TabIndex of 14 will receive the

- focus immediately after the control with a TabIndex of 13. In this case, for
example, the txtState control will receive the focus immediately after the
txtAddress control.

Now look at the TabIndex property for the txtCity control, which was the last
control added to the form.

3 Use the Properties window’s Object box to select the txtCity control. Notice
that the txtCity control’s TabIndex property is set to 26, which means it’s
the 27th control added to the form.

To tell Visual Basic that you want the txtCity control to receive the focus imme-
diately after the txtAddress control, you need to change the TablIndex property of
the txtCity control to 14, which is one number greater than the TabIndex of the
txtAddress control (13). Figure 2-17 shows the current TabIndex values for the
txtAddress, txtCity, and txtState controls and what their TabIndex values should be.

Control Name Current Tablndex Value New Tabindex Value
txtAddress 13 13
txtCity 26 14
txtState 14 15

Figure 2-17: TabIndex values

eo0000OCOOOOOOROOECEDO

You can also move a
locked control by selecting
it in the form, and then
pressing and holding
down the Ctrl key as you
press the up, down, right,
or left arrow key on the
keyboard.

Locking the Controls on a Form

The only TabIndex value you will need to change is the one for the txtCity
control. Changing the txtCity control’s TabIndex property to 14 will cause Visual
Basic to renumber the controls on the form, beginning with the control that origi-
nally had a TabIndex of 14. For example, the TabIndex of the txtState control,
which was originally 14, will be assigned a TabIndex of 15. The control that had
a TabIndex of 15 will be assigned a TabIndex of 16, and so on. After you change
the TablIndex for the txtCity control, you will verify the renumbering by selecting
the txtState control and looking at its TabIndex value.

To change the txtCity control’s TabIndex property, then save and run the project:

1 The TabIndex property for the txtCity control should already be selected in
the Properties window, so just type 14 and press the Enter key.

Verify that the txtState control’s TabIndex property is now 15.

2 Use the Properties window’s Object box to select the txtState control. The
value of its TabIndex property should be 15.

3 Save and run the project.

4 Type Sport Warehouse as the customer name, then press the Tab key to
move the focus to the txtAddress control.

5 Type 123 Main as the address, then press the Tab key. Notice that the
focus now moves to the txtCity control.

You can check the focus order of the remaining controls by simply pressing the
Tab key.

6 Press the Tab key. The focus moves from the txtCity control to the txtState
control, which is correct.

7 Press the Tab key, slowly, ten times. The focus correctly moves to the fol-
lowing controls: txtZip, txtBlue, txtYellow, txtPrice, txtRate, cmdCalc,
cmdPrint, cmdClear, cmdExit, and finally back to the txtName control.

In Windows applications, the Tab key moves the focus forward, and the
Shift+Tab key combination moves the focus backward. Try the Shift + Tab key
combination.

& Press Shift + Tab. The focus moves to the Exit button, as indicated by its
highlighted border and the dotted rectangle around its caption.

9 Because the Exit button has the focus, you can simply press the Enter key to
end the application. The application ends and Visual Basic returns to the
design screen.

Now that all of the controls are on the user interface, you can lock them in
place.

Locking the Controls on a Form

Once you have placed all of the controls in the desired locations on the form, it is
a good idea to lock the controls in their current positions so you don’t inadver-
tently move them. Once the controls are locked, you will not be able to move
them until you unlock them; you can, however, delete them.

