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PREFACE TO THE SECOND AND
THIRD EDITIONS

Although it was in print for a short time only, the original edition
of Multiplicative Number Theory had a major impact on research
and on young mathematicians. By giving a connected account of
the large sieve and Bombieri’s theorem, Professor Davenport made
accessible an important body of new discoveries. With this stimula-
tion, such great progress was made that our current understanding
of these topics extends well beyond what was known in 1966. As the
main results can now be proved much more easily, I made the
radical decision to rewrite §§23-29 completely for the second
edition. In making these alterations I have tried to preserve the tone
and spirit of the original.

Rather than derive Bombieri’s theorem from a zero density
estimate tor L tunctions, as Davenport did, I have chosen to present
Vaughan’s elementary proof of Bombieri’s theorem. This approach
depends on Vaughan’s simplified version of Vinogradov’s method
for estimating sums over prime numbers (see §24). Vinogradov
devised his method in order to estimate the sum ) ,<x e(pa); to
maintain the historical perspective I have inserted (in §§25, 26)
a discussion of this exponential sum and its application to sums of
primes, before turning to the large sieve and Bombieri’s theorem.

Before Professor Davenport’s untimely death in 1969, several
mathematicians had suggested small improvements which might be
made in Multiplicative Number Theory, should it ever be reprinted.
Most of these have been incorporated here; in particular, the nice
refinements in §§12 and 14, were suggested by Professor E. Wirsing.
Professor L. Schoenfeld detected the only significant error in the
book, in the proof of Theorems 4 and 4A of §23. Indeed these
theorems are false as they stood, although their corollaries, which
were used later, are true. In considering the extent and nature of my
revisions, I have benefited from the advice of Professors Baker,
Bombieri, Cassels, Halberstam, Hooley, Mack, Schmidt, and
Vaughan, although the responsibility for the decisions taken is
entirely my own. The assistance throughout of Mrs. H. Davenport
and Dr. J. H. Davenport has been invaluable. Finally, the

vii



viii PREFACE TO THE SECOND AND THIRD EDITIONS

mathematical community is indebted to Professor J.-P. Serre for
urging Springer-Verlag to publish a new edition of this important
book.

H.L.M.



PREFACE TO THE FIRST EDITION

My principal object in these lectures was to give a connected
account of analytic number theory in so far as it relates to problems
of amultiplicative character, with particular attention to the distribu-
tion of primes in arithmetic progressions. Most of the work is by
now classical, and I have followed to a considerable extent the
historical order of discovery. | have included some material which,
though familiar to experts, cannot easily be found in the existing
expositions.

My secondary object was to prove, in the course of this account,
all the results quoted from the literature in the recent paper of
Bombieri' on the average distribution of primes in arithmetic
progressions; and to end by giving an exposition of this work,
which seems likely to play an important part in future researches.
The choice of what was included in the main body of the lectures,
and what was omitted, has been greatly influenced by this considera-
tion. A short section has, however, been added, giving some ref-
erences to other work.

In revising the lectures for publication I have aimed at producing
a readable account of the subject, even at the cost of occasionally
omitting some details. I hope that it will be found useful as an
introduction to other books and monographs on analytic number
theory.

§§23 and 29 contain recent joint work of Professor Halberstam
and myself, and I am indebted to Professor Halberstam for per-
mission to include this. The former gives our version of the basic
principle of the large sieve method, and the latter is an average
result on primes in arithmetic progressions which may prove to be

! On the large sieve, Mathematika, 12, 201-225 (1965).



X PREACE TO THE FIRST EDITION

a useful supplement to Bombieri’s theorem. No account is given of
other sieve methods, since these will form the theme of a later
volume in this series by Professors Halberstam and Richert.?

H.D.

193 This book subsequently appeared as Sieve Methods, Academic Press (London),
74.
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NOTATION

We write f(x) = O(g(x)), or equivalently f(x) < g(x), when there
is a constant C such that | f(x)| < Cg(x) for all values of x under
consideration. We write f(x) ~ g(x) when lim f(x)/g(x) =1 as
x tends to some limit, and f(x) = o(g(x)) when lim f(x)/g(x) = 0.
Moreover, we say that f(x)= Q(g(x)) to indicate that
lim sup | f(x)|/g(x) > 0, while f(x) = Q;(g(x)) means that
lim sup f(x)/g(x) > 0 and lim inf f(x)/g(x) < O.

If & is a vector, then ||£|| denotes its norm, while if 6 is a real
number then |8 denotes the distance from 6 to the nearest integer.
In certain contexts (see p. 32), we let [x] denote the largest integer
not exceeding the real number x, and we let (x) be the fractional part
of x, (x) = x — [x]. Generally s denotes a complex variable,
s = o + it, while p = B + iy denotes the generic non-trivial zero
of the zeta function or of a Dirichlet L function. When no confusion
arises, we let y stand for Euler’s constant.

The arithmetic functions d(n), A(n), u(n), and ¢(n) are defined
as usual. Other symbols are defined on the following pages.

a 71 S(T) 98
B 80-82 &(N) 146
B(y) 83 I(s) 61,73
b(x) 116 {(s) 1
cy(n) 148 {(s, a) 71
E(x, q) 161 &(s) 62
E*(x, q) 161 E(s, ) 71
e(0), e, (0) 7 n(x) 54
h(d) 44 =¥ 160
li x 54 () 65
M, P(q, a), m 146 x(n) 29
N(T) 59 Y(x) 60
N(T, ) 101 v(x, x) 115
N(a, T) 134 V(x, x) 162

N(a, T, x) 133
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1

PRIMES IN ARITHMETIC
PROGRESSION

Analytic number theory may be said to begin with the work of
Dirichlet, and in particular with Dirichlet’s memoir of 1837 on the
existence of primes in a given arithmetic progression.

Long before the time of Dirichlet it had been asserted that every
arithmetic progression

a,a+ q,a+ 2q....

in which a and ¢ have no common factor, includes infinitely many
primes. Legendre, who had based some of his demonstrations on
this proposition, attempted to give a proof but failed. The first proof
was that of Dirichlet in the memoir I have referred to (Dirichlet’s
Werke, 1, pp. 313-342), and strictly speaking this proof was complete
only in the case when q is a prime. For the general case, Dirichlet
had to assume his class number formula, which he proved in a
paper of 1839-1840 (Werke, 1, pp. 411-496). Dirichlet states at the
end of the earlier paper that originally he had a different proof, by
indirect and complicated arguments, of the vital result that was
needed [the fact that L(1, x) # O for each real nonprincipal character
x; see §4], but I do not think that there is any indication anywhere
of its nature.

I shall follow Dirichlet’s example in treating first the simpler case
in which ¢ is a prime. We can suppose that g > 2, for when g = 2
the arithmetic progression contains all sufficiently large odd
numbers, and the proposition is then a triviality.

Dirichlet’s starting point, as he himself says, was Euler’s proof of
the existence of infinitely many primes. If we write

{s)= ) n°%

for a real variable s > 1, then Euler’s identity is

sy =10 =p="
P
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for s > 1, where p runs through all the primes; this identity is an
analytic equivalent for the proposition that every natural number
can be factorized into prime powers in one and only one way. It
follows from the identity that

x

logl(s) =) Y m 'p~™.
P 1

Since {(s) - o0 as s — | from the right, and since

1

Y Z m'pm<y Y pm=) ——= <1

p m=2 p m=2 pp(p_l)

it follows that

Xptox

p

as s —» 1 from the right. This proves the existence of an infinity of
primes, and proves further that the series £p~ ', extended over the
primes, diverges. Dirichlet’s aim was to prove the analogous state-
ments when the primes p are limited to those which satisfy the
condition p = a(mod g).

To this end he introduced the arithmetic functions called
Dirichiet’s characters. Each of these is a function of the integer
variable n, which is periodic with period g and is also multiplicative
(without any restriction). Moreover, these functions are such that a
suitable linear combination of them will produce the function which
1s 1 if n = a(mod g) and O otherwise.

The construction of these functions is based on the existence of a
primitive root to the (prime) modulus ¢, or in other words on the
cyclic structure of the residue classes modulo ¢ under multiplication,
when 0 is excluded. Let v(n) denote the index of n relative to a fixed
primitive root g, that is, the exponent v for which g* = n. Let w be
a real or complex number satisfying

W™= 1.
Then the typical Dirichlet character for the modulus ¢ 1s

'™

which 1s uniquely defined, since the value of v(n) is indeterminate
only to the extent of the addition of a multiple of ¢ — 1. The definition
presupposes that n is not divisible by g, but it is convenient to
complete the definition by taking the function to be 0 when n is
divisible by g. There is one function for each choice of w, and different
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choices of w give different functions; thus there are ¢ — 1 such func-
tions. Each is a periodic function of n with period g, and is multiplica-
tive because, if

n = n;n, (mod gq),
then
v(n) = v(n,) + v(ny) (mod g — 1).

(We have supposed here that neither n, nor n, is divisible by g, but
the multiplicative property is a triviality if either of them is.)

We recall the well-known fact that £, w* has the value ¢ — 1 if k
is divisible by ¢ — 1 and has the value 0 otherwise. Hence

{q— 1 if n = a(mod q),

=wa), v(n) _
w """ = )
Z 0 otherwise,

w

since v(n) = v(@)(modq — 1) if and only if n = a(modgq). The
expression on the left, after division by g — 1, is the linear combin-
ation of the various functions w(n) that was referred to above; it
serves to select from all integers n those that are congruent to the
given number a to the modulus q.

For each of the possible choices for w, Dirichlet introduced the
function

LJs)= Y «@"n

n=1
n ¥0 (mod q)

of the real variable s, for s > 1. Since the coefficient of n™* is a multi-
plicative function of n, we have the analog of Euler’s identity:

Lys)=[] (1 — @"Pp™)71,

P*q

for s > 1. A detailed proof is easily given, on the same lines as for
Euler’s original identity, by considering first the finite product over
p < N and then making N — oo.

None of the factors on the right vanishes, since |w"?p~% =
p~* <3 for s > 1, and as the product is absolutely convergent it
follows that L,(s) # O for s > 1. Taking the logarithm of both
sides, we get

a0

logL,(s)= ) Y m 'e®Mp—m

p¥qm=1

The logarithm on the left is, in principle, multivalued if w is complex,
but the value which is provided by the series on the right is obviously
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the natural one to use, since it is a continuous function of s for s > 1
and tends to 0 as s — oo, corresponding to the fact that L(s) — 1
(1 being the first term in its defining series).

Multiplying the last equation by @~ ** and summing over all the
values of w, we obtain

1 x
(1) Yo " logLys)= Y Y m'p ™.

q — 1 w p m=1
p =a(mod q)

The sum of all those terms on the right for which m > 1 is at most 1,
since they are a subset of the terms considered earlier in connection
with log {(s). Hence the right side of (1) is

Y o p 4+ 01

p=a(mod q)

The essential idea of Dirichlet’s memoir is to prove that the left side
of (1) tends to + oo as s — 1. This will imply that there are infinitely
many primes p = a(modg), and further that the series Xp~'
extended over these primes is divergent.

One of the terms in the sum on the left of (1) comes from w = 1,
and 1s simply log L,(s). The function L,(s) is related in a simple way
to {(s), for we have

Lis)= ) n*=(1—q )s)

n=1

qln
Hence L,(s) » +oc as s — 1 from the right, and therefore the same
is true of log L,(s). Hence to complete the proof it will suffice to show
that, for each choice of w other than 1,

log L (s)

is bounded as s — 1 from the right.
At this point it clarifies the situation if we observe that, provided
w # 1, the series which defines L (s), namely

L(s) = Y @R,

n=1
n# 0 (mod q)

is convergent not only for s > 1 but for s > 0. It is, in fact, a series of
the type covered by Dirichlet’s test for convergence, since (a) n™*
decreases as n increases and has the limit 0, and (b) the sum of any
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number of the coefficients w"™ is bounded. The justification for
(b) lies in the fact that "™ is periodic with period g, and

qg-—1 q—2
Y o =Y o"=0,
n=1 m=0

since the index v(n) runs through a complete set of residues to the
modulus g — L.

It follows further from Dirichlet’s test that the series is uniformly
convergent with respect to s for s > 6 > 0, and consequently
L(s) is a continuous function of s for s > 0. So to prove that log L _(s)
is bounded as s — 1 from the right is equivalent to proving that

) L,(1) # O.

Dirichlet’s proof of this takes entirely different forms according as
w is real or complex. The only real value of w 1s —1, since w # 1
now.

Suppose first that w is complex. If we take a = 1, and so v(a) = 0,
in (1), we get

1 e &)
——YlogL,(s)= Y Y m'p ™
q - l w 14 =1

P =1 (mod q)

Since the terms on the right (if there are any) are positive, it follows
that

Y log L(s) > 0,

which implies that

(3) [1Lu(s) > 1.

All this, of course, is for s > 1.

If there is some complex w for which L (1) = 0, then L (1) =0
also, where @ denotes the complex conjugate of w. Thus two of the
factors on the left of (3) will have the limit 0 as s — 1 from the right.
One other factor, namely L,(s), has the limit + oc. Any other factors
are certainly bounded, being continuous functions of s for s > 0. On
examining in more detail the behavior as s — 1 of the three factors
mentioned, we shall get a contradiction to (3), in that the two factors
with limit O will more than cancel the one factor with limit + oo.

As regards L,(s), we have

Li(s) = (1 — g™)(s) < (1 — g~ *)(s)



