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PREFACE

The third edition of this book differs from the second edition in numerous
ways. To start with, the chapters have been reordered to place the central material
at the beginning. There is also now more of a focus on the operating system as the
creator of abstractions. Chapter 1, which has been heavily updated, introduces all
the concepts. Chapter 2 is about the abstraction of the CPU into multiple
processes. Chapter 3 is about the abstraction of physical memory into address
spaces (virtual memory). Chapter 4 is about the abstraction of the disk into files.
Together, processes, virtual address spaces, and files are the key concepts that op-
erating systems provide, so these chapters are now placed earlier than they pre-
viously had been.

Chapter 1 has been heavily modified and updated in many places. For exam-
ple, an introduction to the C programming language and the C run-time model is
given for readers familiar only with Java.

In Chapter 2, the discussion of threads has been revised and expanded reflect-
ing their new importance. Among other things, there is now a section on IEEE
standard Pthreads.

Chapter 3, on memory management, has been reorganized to emphasize the
idea that one of the key functions of an operating system is to provide the abstrac-
tion of a virtual address space for each process. Older material on memory
management in batch systems has been removed, and the material on the imple-
mentation of paging has been updated to focus on the need to make it handle the
larger address spaces now common and also the need for speed.
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Chapters 4-7 have been updated, with older material removed and some new
material added. The sections on current research in these chapters have been
rewritten from scratch. Many new problems and programming exercises have
been added.

Chapter 8 has been updated, including some material on multicore systems.
A whole new section on virtualization technology, hypervisors, and virtual
machines, has been added with VMware used as an example.

Chapter 9 has been heavily revised and reorganized, with considerable new
material on exploiting code bugs, malware, and defenses against them.

Chapter 10, on Linux, is a revision of the old Chapter 10 (on UNIX and
Linux). The focus is clearly on Linux now, with a great deal of new material.

Chapter 11, on Windows Vista, is a major revision of the old Chap. 11 (on
Windows 2000). It brings the treatment of Windows completely up to date.

Chapter 12 is new. 1 felt that embedded operating systems, such as those
found on cell phones and PDAs, are neglected in most textbooks, despite the fact
that there are more of them out there than there are PCs and notebooks. This edi-
tion remedies this problem, with an extended discussion of Symbian OS, which is
widely used on Smart Phones.

Chapter 13, on operating system design, is largely unchanged from the second
edition.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.prenhall.com/tanenbaum. They include PowerPoint sheets,
software tools for studying operatmg systems, lab experiments for students, simu-
lators, and more material for use in operating systems courses. Instructors using
this book in a course should definitely take a look.

In addition, instructors should examine GOAL (Gradiance Online Accelerated
Learning), Pearson’s premier online homework and assessment system. GOAL is
designed to minimize student frustration while providing an interactive teaching
experience outside the classroom. With GOAL’s immediate feedback, hints, and
pointers that map back to the textbook, students will have a more efficient and
effective learning experience. GOAL delivers immediate assessment and feed-
back via two kinds of assignments: multiple choice Homework exercises and
interactive Lab work.

The multiple-choice homework consists of a set of multiple choice questions
designed to test student knowledge of a solved problem. When answers are graded
as incorrect, students are given a hint and directed back to a specific section in the
course textbook for helpful information.

The interactive Lab Projects in GOAL, unlike syntax checkers and compilers,
check for both syntactic and semantic errors. GOAL determines if the student’s
program runs but more importantly, when checked against a hidden data set, veri-
fies that it returns the correct result. By testing the code and providing immediate
feedback, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.
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Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and Modern
Operating Systems, 3e Value Pack (ISBN: 0135013011).

A number of people helped me with this revision. First and foremost I want
to thank my editor, Tracy Dunkelberger. This is my 18th book and I have worn
out a lot of editors in the process. Tracy went above and beyond the call of duty
on this one, doing things like finding contributors, arranging numerous reviews,
helping with all the supplements, dealing with contracts, interfacing to PH, coor-
dinating a great deal of parallel processing, generally making sure things happen-
ed on time, and more. She also was able to get me to make and keep to a very
tight schedule in order to get this book out in time. And all this while she remain-
ed chipper and cheerful, despite many other demands on her time. Thank you,
Tracy. I appreciate it a lot.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals,
updated Chap. 10 from one on UNIX (with a focus on FreeBSD) to one more
about Linux, although much of the chapter is still generic to all UNIX systems.
Linux is more popular among students than FreeBSD, so this is a valuable change.

Dave Probert of Microsoft updated Chap. 11 from one on Windows 2000 to
one on Windows Vista. While they have some similarities, they also have signifi-
cant differences. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. The book is much better as a result of his work.

Mike Jipping of Hope College wrote the chapter on Symbian OS. Not having
anything on embedded real-time systems was a serious omission in the book, and
thanks to Mike that problem has been solved. Embedded real-time systems are
becoming increasingly important in the world and this chapter provides an excel-
lent introduction to the subject.

Unlike Ada, Dave, and Mike, who each focused on one chapter, Shivakant
Mishra of the University of Colorado at’' Boulder was more like a distributed sys-
tem, reading and commenting on many chapters and also supplying a substantial
number of new exercises and programming problems throughout the book.

Hugh Lauer also gets a special mention, When we asked him for ideas about
how to revise the second edition, we weren’t expecting a report of 23 single-
spaced pages, but that is what we got. Many of the changes, such as the new em-
phasis on the abstractions of processes, address spaces, and files are due to his in-
put.

I would also like to thank other people who helped me in many ways, includ-
ing suggesting new topics to cover, reading the manuscript carefully, making sup-
plements, and contributing new exercises. Among them are Steve Armstrong, Jef-
frey Chastine, John Connelly, Mischa Geldermans, Paul Gray, James Griffioen,
Jorrit Herder, Michael Howard, Suraj Kothari, Roger Kraft, Trudy Levine, John
Masiyowski, Shivakant Mishra, Rudy Pait, Xiao Qin, Mark Russinovich, Krishna
Sivalingam, Leendert van Doorn, and Ken Wong.
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The people at Prentice Hall have been friendly and helpful as always, espe-
cially including Irwin Zucker and Scott Disanno in production and David Alick,
ReeAnne Davies, and Melinda Haggerty in editorial.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. And of course, I would like to thank Suzanne
for her love and patience, not to mention all the druiven and kersen, which have
replaced the sinaasappelsap in recent times.

Andrew S. Tanenbaum
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