HZ Books

T

#E

OPERATING
SYSTEMS

Mobile operating Multithread
system system

Process
scheduler

PEARSON

Prentice
Hall

&

R4t

BRIE
-]
(RIZhR - SR3HR)

D~
Lo
o
g
©
—
(a2)
A
=

A

English reprint edition copyright © 2009 by Pearson Education Asia Limited and
China Machine Press.

Original English languagé title: Modern Operating Systems, Third Edition (ISBN
978-0-13-600663-3) by Andrew S. Tanenbaum, Copyright © 2008 Pearson Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A58 EIR i Pearson Education Asia Ltd #2808 Tl AR # i 52 HIAR
FEEREBEEA, NEUEAGTRERSPEERSNE,

MR TrhE ARLFMESEN (FEFPEEE, RIIHFITEEATESE
X)) #ERT,

A E Hllk A Pearson Education (BrAK&EHMER) #AD %, Lir%E
HEAIRHE,

HEAUTE, BRLR.
FHEEME AR HRIXBITE SR

ABRENEIZS: BF: 01-2009-1357
BBERKE (CIP) #iR

BREBERSE (RIR - F3MR) / (FF) E# M (Tanenbaum, A. S.) .
—Abm: YL TR, 2009.3

(L BT RRH %)

F 4B L. Modern Operating Systems, Third Edition

ISBN 978-7-111-26527-6
L8 0.8 I BERE-# V. TP316
A B S RCIPRAR B (2009) 450313745

HURR Lol R H: (et E B K229 MBS 100037)
L. BiIRE

At 5 s UHEN % A PR 2% I ET]

20094E3 & LIRS 1 ke Cll A

150mm x 214mm - 34.5E[5k

b2, ISBN 978-7-111-26527-6

EWr: 69.005¢

LA, mAFET., BT, 8, hAdkiTHiEs
AWk (010) 68326294

tljh‘&%ﬂ’h% ?

TS ?&”«

XEELURE, FERKOFHEERMES RS RIE, EH)
EREHARPZNENTRIE T ZH RS, BERXERNERE,
E(EEGEREARRRIATZERAKEN ., BENE, £HLArkE
i, EEBFLR SHEREREERE S, HELZERPHT 2R
bt lEl Rt S AR BRI B A B AT 2R, BULWI R BB E R, T8
R THLRTERE, BER T HEARMERE, REBBEAAE, XAFEES
#, EMEHFASEE AR mRER. '

L4, ELRERAKEEDT, REMUHRELS LRRRE, %
EWAFHIFRB S, A HEIETFMLRFBRELEIE, B
P MEPLBHHBRRERFRE LEEEERE,. EREGRHEAK
i R BLR T, EEF RS EFELTEIRER RP L+ 4
EMERNSBEMNATSE/EEZL. Bk, SIE—-#EIMESETT
BILEM B RETELE T F LR REIBRENER, W5
R, BEAEMHER —RKENLhZE,

PLAR Dol st e 2o p bR B IRE] “HRBABFIRS . H19984
Fooh, RESHRBETEEARET #E, BERMEEM L, 222
EHARE S, $li15Pearson, McGraw-Hill, Elsevier, MIT, John
Wiley & Sons, Cengage’&ith &L IMRATHA T RIFAIERR, Mith
1184 A8 E F8cbt 8 3% H Andrew S. Tanenbaum, Bjarne Stroustrup,
Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E.
Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William Stallings,
Donald E. Knuth, John L. Hennessy, Larry L. Peterson®s K 4K AI—#H 2
BAESR, DL “TFEABZAE" ARSI, ik, HREREHE.
AEASEMIE, BEAR TXENBH RIS,

“CREIBEAS" (HRTERRE TENIMESRRDER), BN
ERAGRB TR EMNEEES, SRS SHEE THIENERNT

fe: MEBMESBAYSELEREHENEE, ARNETRAKSH
hEAER. €4, HEREAE CRURTERBE SN, K&
BEEEE PR T RFOO®, HEFSERRAAERBHMMSHS
B, IR “SMBRREBE" VEAThE R sRbl 2 SKRRUE HE W
FRFRHA

REHIEE . SHREM. —ROFE. MRIOHERE. BHaNEHE,
XEREERNWELA T RENRIE. BAEUHENLPESERT LER
BIEMAW e EMBMBENRHEL, BFRMEMIENEM TR
IR AEES A—NFHNE, BOPERRRERRX, MRBHERLLE
RBATAEEX — 24k BRI EERB) . B A VON 2 AR E XA
THRHBIGEA THRE, BRINNKATENT:

£ZM L. www.hzbook.com

B FHB{. hzjsj@hzbook.com
BEZEHIE. (010) 88379604

BRI, AFT BKE F A AT
HR B 4RAL . 100037

PREFACE

The third edition of this book differs from the second edition in numerous
ways. To start with, the chapters have been reordered to place the central material
at the beginning. There is also now more of a focus on the operating system as the
creator of abstractions. Chapter 1, which has been heavily updated, introduces all
the concepts. Chapter 2 is about the abstraction of the CPU into multiple
processes. Chapter 3 is about the abstraction of physical memory into address
spaces (virtual memory). Chapter 4 is about the abstraction of the disk into files.
Together, processes, virtual address spaces, and files are the key concepts that op-
erating systems provide, so these chapters are now placed earlier than they pre-
viously had been.

Chapter 1 has been heavily modified and updated in many places. For exam-
ple, an introduction to the C programming language and the C run-time model is
given for readers familiar only with Java.

In Chapter 2, the discussion of threads has been revised and expanded reflect-
ing their new importance. Among other things, there is now a section on IEEE
standard Pthreads.

Chapter 3, on memory management, has been reorganized to emphasize the
idea that one of the key functions of an operating system is to provide the abstrac-
tion of a virtual address space for each process. Older material on memory
management in batch systems has been removed, and the material on the imple-
mentation of paging has been updated to focus on the need to make it handle the
larger address spaces now common and also the need for speed.

vi PREFACE

Chapters 4-7 have been updated, with older material removed and some new
material added. The sections on current research in these chapters have been
rewritten from scratch. Many new problems and programming exercises have
been added.

Chapter 8 has been updated, including some material on multicore systems.
A whole new section on virtualization technology, hypervisors, and virtual
machines, has been added with VMware used as an example.

Chapter 9 has been heavily revised and reorganized, with considerable new
material on exploiting code bugs, malware, and defenses against them.

Chapter 10, on Linux, is a revision of the old Chapter 10 (on UNIX and
Linux). The focus is clearly on Linux now, with a great deal of new material.

Chapter 11, on Windows Vista, is a major revision of the old Chap. 11 (on
Windows 2000). It brings the treatment of Windows completely up to date.

Chapter 12 is new. 1 felt that embedded operating systems, such as those
found on cell phones and PDAs, are neglected in most textbooks, despite the fact
that there are more of them out there than there are PCs and notebooks. This edi-
tion remedies this problem, with an extended discussion of Symbian OS, which is
widely used on Smart Phones.

Chapter 13, on operating system design, is largely unchanged from the second
edition.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.prenhall.com/tanenbaum. They include PowerPoint sheets,
software tools for studying operatmg systems, lab experiments for students, simu-
lators, and more material for use in operating systems courses. Instructors using
this book in a course should definitely take a look.

In addition, instructors should examine GOAL (Gradiance Online Accelerated
Learning), Pearson’s premier online homework and assessment system. GOAL is
designed to minimize student frustration while providing an interactive teaching
experience outside the classroom. With GOAL’s immediate feedback, hints, and
pointers that map back to the textbook, students will have a more efficient and
effective learning experience. GOAL delivers immediate assessment and feed-
back via two kinds of assignments: multiple choice Homework exercises and
interactive Lab work.

The multiple-choice homework consists of a set of multiple choice questions
designed to test student knowledge of a solved problem. When answers are graded
as incorrect, students are given a hint and directed back to a specific section in the
course textbook for helpful information.

The interactive Lab Projects in GOAL, unlike syntax checkers and compilers,
check for both syntactic and semantic errors. GOAL determines if the student’s
program runs but more importantly, when checked against a hidden data set, veri-
fies that it returns the correct result. By testing the code and providing immediate
feedback, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.

PREFACE vii

Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and Modern
Operating Systems, 3e Value Pack (ISBN: 0135013011).

A number of people helped me with this revision. First and foremost I want
to thank my editor, Tracy Dunkelberger. This is my 18th book and I have worn
out a lot of editors in the process. Tracy went above and beyond the call of duty
on this one, doing things like finding contributors, arranging numerous reviews,
helping with all the supplements, dealing with contracts, interfacing to PH, coor-
dinating a great deal of parallel processing, generally making sure things happen-
ed on time, and more. She also was able to get me to make and keep to a very
tight schedule in order to get this book out in time. And all this while she remain-
ed chipper and cheerful, despite many other demands on her time. Thank you,
Tracy. I appreciate it a lot.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals,
updated Chap. 10 from one on UNIX (with a focus on FreeBSD) to one more
about Linux, although much of the chapter is still generic to all UNIX systems.
Linux is more popular among students than FreeBSD, so this is a valuable change.

Dave Probert of Microsoft updated Chap. 11 from one on Windows 2000 to
one on Windows Vista. While they have some similarities, they also have signifi-
cant differences. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. The book is much better as a result of his work.

Mike Jipping of Hope College wrote the chapter on Symbian OS. Not having
anything on embedded real-time systems was a serious omission in the book, and
thanks to Mike that problem has been solved. Embedded real-time systems are
becoming increasingly important in the world and this chapter provides an excel-
lent introduction to the subject.

Unlike Ada, Dave, and Mike, who each focused on one chapter, Shivakant
Mishra of the University of Colorado at’' Boulder was more like a distributed sys-
tem, reading and commenting on many chapters and also supplying a substantial
number of new exercises and programming problems throughout the book.

Hugh Lauer also gets a special mention, When we asked him for ideas about
how to revise the second edition, we weren’t expecting a report of 23 single-
spaced pages, but that is what we got. Many of the changes, such as the new em-
phasis on the abstractions of processes, address spaces, and files are due to his in-
put.

I would also like to thank other people who helped me in many ways, includ-
ing suggesting new topics to cover, reading the manuscript carefully, making sup-
plements, and contributing new exercises. Among them are Steve Armstrong, Jef-
frey Chastine, John Connelly, Mischa Geldermans, Paul Gray, James Griffioen,
Jorrit Herder, Michael Howard, Suraj Kothari, Roger Kraft, Trudy Levine, John
Masiyowski, Shivakant Mishra, Rudy Pait, Xiao Qin, Mark Russinovich, Krishna
Sivalingam, Leendert van Doorn, and Ken Wong.

viii PREFACE

The people at Prentice Hall have been friendly and helpful as always, espe-
cially including Irwin Zucker and Scott Disanno in production and David Alick,
ReeAnne Davies, and Melinda Haggerty in editorial.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. And of course, I would like to thank Suzanne
for her love and patience, not to mention all the druiven and kersen, which have
replaced the sinaasappelsap in recent times.

Andrew S. Tanenbaum

ABOUT THE AUTHOR

Andrew S. Tanenbaum has an S.B. degree from M.L.T. and a Ph.D. from the
University of California at Berkeley. He is currently a Professor of Computer
Science at the Vrije Universiteit in Amsterdam, The Netherlands, where he heads
the Computer Systems Group. He was formerly Dean of the Advanced School for
Computing and Imaging, an interuniversity graduate school doing research on
advanced parallel, distributed, and imaging systems. He is now an Academy Pro-
fessor of the Royal Netherlands Academy of Arts and Sciences, which has saved
him from turning into a bureaucrat.

In the past, he has done research on compilers, operating systems, networking,
local-area distributed systems and wide-area distributed systems that scale to a
billion users. His main focus now is doing research on reliable and secure operat-
ing systems. These research projects have led to over 140 refereed papers in jour-
nals and conferences. Prof. Tanenbaum has also authored or co-authored five
books which have now appeared in 18 editions. The books have been translated
into 21 languages, ranging from Basque to Thai and are used at universities all
over the world. In all, there are 130 versions (language + edition combinations).

Prof. Tanenbaum has also produced a considerable volume of software. He
was the principal architect of the Amsterdam Compiler Kit, a widely-used toolkit
for writing portable compilers. He was also one of the principal designers of
Amoeba, an early distributed system used on a collection of workstations con-
nected by a LAN and of Globe, a wide-area distributed system.

He is also the author of MINIX, a small UNIX clone initially intended for use
in student programming labs. It was the direct inspiration for Linux and the plat-
form on which Linux was initially developed. The current version of MINIX,
called MINIX 3, is now focused on being an extremely reliable and secure op-
erating system. Prof. Tanenbaum will consider his work done when no computer
is equipped with a reset button. MINIX 3 is an on-going open-source project to
which you are invited to contribute. Go to www.minix3.org to download a free
copy and find out what is happening.

_ Prof. Tanenbaum’s Ph.D. students have gone on to greater glory after graduat-
ing. He is very proud of them. In this respect he resembles a mother hen.

Tanenbaum is a Fellow of the ACM, a Fellow of the IEEE, and a member
of the Royal Netherlands Academy of Arts and Sciences. He has also won num-
erous scientific prizes, including:

o the 2007 IEEE James H. Mulligan, Jr. Education Medal

¢ the 2003 TAA McGuffey Award for Computer Science and Engineering

¢ the 2002 TAA Texty Award for Computer Science and Engineering

¢ the 1997 ACM/SIGCSE Award for Outstanding Contributions to Computer
o the 1994 ACM Karl V. Karlstrom Outstanding Educator Award

He is also listed in Who’s Who in the World. His home page on the World Wide
Web can be found at URL hup:/fwww.cs.vu.nl/~ast/.

CONTENTS

PREFACE

INTRODUCTION 1

1.1 'WHAT IS AN OPERATING SYSTEM? 3

1.1.1 The Operating System as an Extended Machine 4
1.1.2 The Operating System as a Resource Manager 6

1.2 HISTORY OF OPERATING SYSTEMS 7
1.2.1 The First Generation (1945-55) Vacuum Tubes 7
1.2.2 The Second Generation (1955-65) Transistors and Batch Systems 8
1.2.3 The Third Generation (1965-1980) ICs and Multiprogramming 10
1.2.4 The Fourth Generation (1980-Present) Personal Computers 15

1.3 COMPUTER HARDWARE REVIEW 19
1.3.1 Processors 19
1.3.2 Memory 23
1.3.3 Disks 26
1.3.4 Tapes 27
1.3.5 I/O Devices 27 .
1.3.6 Buses 30
1.3.7 Booting the Computer 33

14

1.5

1.6

1.7

1.8

1.9

CONTENTS xi

THE OPERATING SYSTEM ZOO 33

1.4.1 Mainframe Operating Systems 34

1.4.2 Server Operating Systems 34

1.4.3 Multiprocessor Operating Systems 34
1.4.4 Personal Computer Operating Systems 35
1.4.5 Handheld Computer Operating Systems 35
1.4.6 Embedded Operating Systems. 35

1.4.7 Sensor Node Operating Systems 36

1.4.8 Real-Time Operating Systems 36

1.4.9 Smart Card Operating Systems 37

OPERATING SYSTEM CONCEPTS 37
1.5.1 Processes 38

1.5.2 Address Spaces 40

1.5.3 Files 40

1.5.4 Input/Output 43

1.5.5 Protection 44

1.5.6 The Shell 44

1.5.7 Ontogeny Recapitulates Phylogeny 46

SYSTEM CALLS 49

1.6.1 System Calls for Process Management 52
1.6.2 System Calls for File Management 56

1.6.3 System Calls for Directory Management 57
1.6.4 Miscellaneous System Calls 58

1.6.5 The Windows Win32 API 59

OPERATING SYSTEM STRUCTURE 62
1.7.1 Monolithic Systems 62

1.7.2 Layered Systems 63

1.7.3 Microkernels 64

1.7.4 Client-Server Model 67

1.7.5 Virtual Machines 67

1.7.6 Exokernels 71

THE WORLD ACCORDING TOC 72
1.8.1 The C Language 72

1.8.2 Header Files 73

1.8.3 Large Programming Projects 74
1.8.4 The Model of Run Time 75

RESEARCH ON OPERATING SYSTEMS 76

Xii

CONTENTS

1.10 OUTLINE OF THE REST OF THIS BOOK 77
1.11 METRIC UNITS 78

1.12 SUMMARY 79

PROCESSES AND THREADS

2.1 PROCESSES 83
2.1.1 The Process Model 84
2.1.2 Process Creation 86
2.1.3 Process Termination 88
2.1.4 Process Hierarchies 89
2.1.5 Process States 90
2.1.6 Implementation of Processes 91
2.1.7 Modeling Multiprogramming 93

2.2 THREADS 95
2.2.1 Thread Usage 93
2.2.2 The Classical Thread Model 100
2.2.3 POSIX Threads 104
2.2.4 Implementing Threads in User Space 106
2.2.5 Implementing Threads in the Kernel 109
2.2.6 Hybrid Implementations 110
2.2.7 Scheduler Activations 111
2.2.8 Pop-Up Threads 112
2.2.9 Making Single-Threaded Code Multithreaded 114

23 INTERPROCESS COMMUNICATION 117
2.3.1 Race Conditions 117
2.3.2 Critical Regions 119
2.3.3 Mutual Exclusion with Busy Waiting 120
2.3.4 Sleep and Wakeup 125 :
2.3.5 Semaphores 128
2.3.6 Mutexes 130
2.3.7 Monitors 134
2.3.8 Message Passing 140
2.3.9 Barriers 144

83

24

2.5

2.6

2.1

CONTENTS Xiii

SCHEDULING 145

2.4.1 Introduction to Scheduling 145

2.4.2 Scheduling in Batch Systems 152
2.4.3 Scheduling in Interactive Systems 154
2.4.4 Scheduling in Real-Time Systems 160
2.4.5 Policy versus Mechanism 161

2.4.6 Thread Scheduling 162

CLASSICAL IPC PROBLEMS 163

2.5.1 The Dining Philosophers Problem - 164

2.5.2 The Readers and Writers Problem 167
RESEARCH ON PROCESSES AND THREADS 168

SUMMARY 169

MEMORY MANAGEMENT 175

3.1

3.2

33

34

NO MEMORY ABSTRACTION 176

A MEMORY ABSTRACTION: ADDRESS SPACES 179
3.2.1 The Notion of an Address Space 180

3.2.2 Swapping 181 .

3.2.3 Managing Free Memory 184

VIRTUAL MEMORY 188

3.3.1 Paging 189

3.3.2 Page Tables 193

3.3.3 Speeding Up Paging 194

3.3.4 Page Tables for Large Memories 198

PAGE REPLACEMENT ALGORITHMS 201

3.4.1 The Optimal Page Replacement Algorithm 202

3.4.2 The Not Recently Used Page Replacement Algorithm 203

3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 204
3.4.4 The Second-Chance Page Replacement Algorithm 204

3.4.5 The Clock Page Replacement Algorithm 205

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 206
3.4.7 Simulating LRU in Software 207 .

3.4.8 The Working Set Page Replacement Algorithm 209

Xiv

3.5

3.6

37

3.8

39

CONTENTS

3.4.9 The WSClock Page Replacement Algorithm 213
3.4.10 Summary of Page Replacement Algorithms 215

DESIGN ISSUES FOR PAGING SYSTEMS 216
3.5.1 Local versus Global Allocation Policies 216
3.5.2 Load Control 218

3.5.3 Page Size 219

3.5.4 Separate Instruction and Data Spaces 221
3.5.5 Shared Pages 221

3.5.6 Shared Libraries 223

3.5.7 Mapped Files 225

3.5.8 Cleaning Policy 226

3.5.9 Virtual Memory Interface 226

IMPLEMENTATION ISSUES 227

3.6.1 Operating System Involvement with Paging 227
3.6.2 Page Fault Handling 228

3.6.3 Instruction Backup 229

3.6.4 Locking Pages in Memory 230

3.6.5 Backing Store 231

3.6.6 Separation of Policy and Mechanism 233

SEGMENTATION 234
3.7.1 Implementation of Pure Segmentation 237
3.7.2 Segmentation with Paging: MULTICS 238

3.7.3 Segmentation with Paging: The Intel Pentium 242

RESEARCH ON MEMORY MANAGEMENT 247

SUMMARY 248

FILE SYSTEMS

4.1

FILES 257

4.1.1 File Naming 257
4.1.2 File Structure 259
4.1.3 File Types 260
4.1.4 File Access 262
4.1.5 File Attributes 263

255

CONTENTS XV

4.1.6 File Operations 264
4.1.7 An Example Program Using File System Calls 265

42 DIRECTORIES 268
4.2.1 Single-Level Directory Systems 268
4.2.2 Hierarchical Directory Systems 268
4.2.3 Path Names 269
4.2.4 Directory Operations 272

43 FILE SYSTEM IMPLEMENTATION 273
4.3.1 File System Layout 273
4.3.2 Implementing Files 274
4.3.3 Implementing Directories 280
4.3.4 Shared Files 283
4.3.5 Log-Structured File Systems 285
4.3.6 Journaling File Systems 287
4.3.7 Virtual File Systems 288

44 FILE SYSTEM MANAGEMENT AND OPTIMIZATION 292
4.4.1 Disk Space Management 292
4.4.2 File System Backups 298
4.4.3 File System Consistency 304
4.4.4 File System Performance 307
4.4.5 Defragmenting Disks 311

45 EXAMPLE FILE SYSTEMS 312
4.5.1 CD-ROM File Systems 312
4.5.2 The MS-DOS File System 318
4.5.3 The UNIX V7 File System 321
46 RESEARCH ON FILE SYSTEMS 324

47 SUMMARY 324

INPUT/OUTPUT 329

5.1 PRINCIPLES OF /O HARDWARE 329
5.1.1 I/O Devices 330
5.1.2 Device Controllers 331

XVi CONTENTS

5.1.3 Memory-Mapped /O 332
5.1.4 Direct Memory Access (DMA) 336
5.1.5 Interrupts Revisited 339

5.2 PRINCIPLES OF /O SOFTWARE 343
5.2.1 Goals of the I/O Software 343
5.2.2 Programmed /O 344
5.2.3 Interrupt-Driven /O 346
5.2.4 /O Using DMA 347

5.3 1/0 SOFTWARE LAYERS 348
5.3.1 Interrupt Handlers 348
5.3.2 Device Drivers 349
5.3.3 Device-Independent 1/0 Software 353
5.3.4 User-Space /O Software 359

54 DISKS 360
5.4.1 Disk Hardware 361
5.4.2 Disk Formatting 376
5.4.3 Disk Arm Scheduling Algorithms 379
5.4.4 Error Handling 382
5.4.5 Stable Storage 385 -

5.5 CLOCKS 388
5.5.1 Clock Hardware 388
5.5.2 Clock Software 390
5.5.3 Soft Timers 393

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 394
5.6.1 Input Software 394
5.6.2 Output Software 399

5.7 THIN CLIENTS 415
5.8 POWER MANAGEMENT 417
5.8.1 Hardware Issues 418
5.8.2 Operating System Issues 419
5.8.3 Application Program Issues 424
5.9 RESEARCH ON INPUT/OUTPUT 425

5.10 SUMMARY 426

