in Python

MicHAEL T. GoobricH © RoBerto Tamassia @ MicHAEL H. GOLDWASSER

Data Structures and
Algorithms in Python

Michael T. Goodrich

Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science
Brown University

Michael H. Goldwasser

Department of Mathematics and Computer Science
Saint Louis University

o { A 8 ¢
i x)\‘f‘i- il

;jﬁ 35 E

WILEY

VP & PUBLISHER Don Fowley

EXECUTIVE EDITOR Beth Lang Golub
EDITORIAL PROGRAM ASSISTANT Katherine Willis
MARKETING MANAGER Christopher Ruel
DESIGNER Kenji Ngieng
SENIOR PRODUCTION MANAGER Janis Soo
ASSOCIATE PRODUCTION MANAGER Joyce Poh

This book was set in BTEX by the authors. Printed and bound by Courier Kendallville.
The cover was printed by Courier Kendallville.

This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for
more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our
company is built on a foundation of principles that include responsibility to the communities we serve and
where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are
addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and
among our vendors, and community and charitable support. For more information, please visit our website:
www.wiley.com/go/citizenship.

Copyright © 2013 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of

the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222
Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use

in their courses during the next academic year. These copies are licensed and may not be sold or transferred
to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return mailing label are available at www.wiley.com/go/returnlabel. If you
have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk
copy. Outside of the United States, please contact your local sales representative.

Printed in the United States of America
10987654321

To Karen, Paul, Anna, and Jack
— Michael T. Goodrich

To Isabel
— Roberto Tamassia

To Susan, Calista, and Maya
— Michael H. Goldwasser

A EE, 7 B SE BEPDFIE U7 M) : www. ertongbook. com

Preface

The design and analysis of efficient data structures has long been recognized as a
vital subject in computing and is part of the core curriculum of computer science
and computer engineering undergraduate degrees. Data Structures and Algorithms
in Python provides an introduction to data structures and algorithms, including their
design, analysis, and implementation. This book is designed for use in a beginning-
level data structures course, or in an intermediate-level introduction to algorithms
course. We discuss its use for such courses in more detail later in this preface.

To promote the development of robust and reusable software, we have tried to
take a consistent object-oriented viewpoint throughout this text. One of the main
ideas of the object-oriented approach is that data should be presented as being en-
capsulated with the methods that access and modify them. That is, rather than
simply viewing data as a collection of bytes and addresses, we think of data ob-
jects as instances of an abstract data type (ADT), which includes a repertoire of
methods for performing operations on data objects of this type. We then empha-
size that there may be several different implementation strategies for a particular
ADT, and explore the relative pros and cons of these choices. We provide complete
Python implementations for almost all data structures and algorithms discussed,
and we introduce important object-oriented design patterns as means to organize
those implementations into reusable components.

Desired outcomes for readers of our book include that:

e They have knowledge of the most common abstractions for data collections

(e.g., stacks, queues, lists, trees, maps).

e They understand algorithmic strategies for producing efficient realizations of

common data structures.

e They can analyze algorithmic performance, both theoretically and experi-

mentally, and recognize common trade-offs between competing strategies.

e They can wisely use existing data structures and algorithms found in modern

programming language libraries.

e They have experience working with concrete implementations for most foun-

dational data structures and algorithms.

e They can apply data structures and algorithms to solve complex problems.
In support of the last goal, we present many example applications of data structures
throughout the book, including the processing of file systems, matching of tags
in structured formats such as HTML, simple cryptography, text frequency analy-
sis, automated geometric layout, Huffman coding, DNA sequence alignment, and
search engine indexing.

Preface

Book Features

This book is based upon the book Data Structures and Algorithms in Java by
Goodrich and Tamassia, and the related Data Structures and Algorithms in C++
by Goodrich, Tamassia, and Mount. However, this book is not simply a translation
of those other books to Python. In adapting the material for this book, we have
significantly redesigned the organization and content of the book as follows:

e The code base has been entirely redesigned to take advantage of the features
of Python, such as use of generators for iterating elements of a collection.

e Many algorithms that were presented as pseudo-code in the Java and C++
versions are directly presented as complete Python code.

e In general, ADTs are defined to have consistent interface with Python’s built-
in data types and those in Python’s collections module.

e Chapter 5 provides an in-depth exploration of the dynamic array-based un-
derpinnings of Python’s built-in list, tuple, and str classes. New Appendix A
serves as an additional reference regarding the functionality of the str class.

e Over 450 illustrations have been created or revised.

e New and revised exercises bring the overall total number to 750.

Online Resources

This book is accompanied by an extensive set of online resources, which can be
found at the following Web site:
www.wiley.com /college/goodrich

Students are encouraged to use this site along with the book, to help with exer-
cises and increase understanding of the subject. Instructors are likewise welcome
to use the site to help plan, organize, and present their course materials. Included
on this Web site is a collection of educational aids that augment the topics of this
book, for both students and instructors. Because of their added value, some of these
online resources are password protected.

For all readers, and especially for students, we include the following resources:

e All the Python source code presented in this book.

e PDF handouts of Powerpoint slides (four-per-page) provided to instructors.

e A database of hints to all exercises, indexed by problem number.
For instructors using this book, we include the following additional teaching aids:

e Solutions to hundreds of the book’s exercises.

e Color versions of all figures and illustrations from the book.

e Slides in Powerpoint and PDF (one-per-page) format.
The slides are fully editable, so as to allow an instructor using this book full free-
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.

Preface vii

Contents and Organization

The chapters for this book are organized to provide a pedagogical path that starts
with the basics of Python programming and object-oriented design. We then add
foundational techniques like algorithm analysis and recursion. In the main portion
of the book, we present fundamental data structures and algorithms, concluding
with a discussion of memory management (that is, the architectural underpinnings
of data structures). Specifically, the chapters for this book are organized as follows:

Python Primer

Object-Oriented Programming
Algorithm Analysis

Recursion

Array-Based Sequences

Stacks, Queues, and Deques
Linked Lists

Trees

Priority Queues

Maps, Hash Tables, and Skip Lists
11. Search Trees

12. Sorting and Selection

13. Text Processing

14. Graph Algorithms

15. Memory Management and B-Trees
A. Character Strings in Python

B. Useful Mathematical Facts

A more detailed table of contents follows this preface, beginning on page xi.

(0 98 > QN LA s LY B b

Prerequisites

We assume that the reader is at least vaguely familiar with a high-level program-
ming language, such as C, C++, Python, or Java, and that he or she understands the
main constructs from such a high-level language, including:

e Variables and expressions.

e Decision structures (such as if-statements and switch-statements).

e Iteration structures (for loops and while loops).

e Functions (whether stand-alone or object-oriented methods).
For readers who are familiar with these concepts, but not with how they are ex-
pressed in Python, we provide a primer on the Python language in Chapter 1. Still,
this book is primarily a data structures book, not a Python book; hence, it does not
give a comprehensive treatment of Python.

viii

Preface

We delay treatment of object-oriented programming in Python until Chapter 2.
This chapter is useful for those new to Python, and for those who may be familiar
with Python, yet not with object-oriented programming.

In terms of mathematical background, we assume the reader is somewhat famil-
iar with topics from high-school mathematics. Even so, in Chapter 3, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (%). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix B.

Relation to Computer Science Curriculum

To assist instructors in designing a course in the context of the IEEE/ACM 2013
Computing Curriculum, the following table describes curricular knowledge units
that are covered within this book.

Relevant Material
Chapter 3 and Sections 4.2 & 12.2.4
Sections 12.2.1, 13.2.1, 13.3, & 13.4.2

Knowledge Unit
AL/Basic Analysis
AL/Algorithmic Strategies

AL/Fundamental Data Structures
and Algorithms

Sections 4.1.3, 5.5.2,9.4.1,9.3, 10.2, 11.1, 13.2,
Chapter 12 & much of Chapter 14

AL/Advanced Data Structures

Sections 5.3, 10.4, 11.2 through 11.6, 12.3.1,
13.5,14.5.1, & 15.3

AR/Memory System Organization
and Architecture

Chapter 15

DS/Sets, Relations and Functions

Sections 10.5.1,10.5.2, & 9.4

DS/Proof Techniques Sections 3.4,4.2,5.3.2,9.3.6, & 12.4.1
DS/Basics of Counting Sections 2.4.2, 6.2.2, 12.2.4,8.2.2 & Appendix B
DS/Graphs and Trees Much of Chapters 8 and 14

DS/Discrete Probability

Sections 1.11.1, 10.2, 10.4.2, & 12.3.1

PL/Object-Oriented Programming

Much of the book, yet especially Chapter 2 and
Sections 7.4,9.5.1, 10.1.3, & 11.2.1

PL/Functional Programming

Section 1.10

SDF/Algorithms and Design

Sections 2.1, 3.3, & 12.2.1

SDF/Fundamental Programming
Concepts

Chapters | & 4

SDF/Fundamental Data Structures

Chapters 6 & 7, Appendix A, and Sections 1.2.1,
5.2,54,9.1, & 10.1

SDF/Developmental Methods

Sections 1.7 & 2.2

SE/Software Design

Sections 2.1 & 2.1.3

Mapping IEEE/ACM 2013 Computing Curriculum knowledge units to coverage in
this book.

Preface

About the Authors

Michael Goodrich received his Ph.D. in Computer Science from Purdue University
in 1987. He is currently a Chancellor’s Professor in the Department of Computer
Science at University of California, Irvine. Previously, he was a professor at Johns
Hopkins University. He is a Fulbright Scholar and a Fellow of the American As-
sociation for the Advancement of Science (AAAS), Association for Computing
Machinery (ACM), and Institute of Electrical and Electronics Engineers (IEEE).
He is a recipient of the IEEE Computer Society Technical Achievement Award,
the ACM Recognition of Service Award, and the Pond Award for Excellence in
Undergraduate Teaching.

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech
Professor of Computer Science and the Chair of the Department of Computer Sci-
ence at Brown University. He is also the Director of Brown’s Center for Geometric
Computing. His research interests include information security, cryptography, anal-
ysis, design, and implementation of algorithms, graph drawing and computational
geometry. He is a Fellow of the American Association for the Advancement of
Science (AAAS), Association for Computing Machinery (ACM) and Institute for
Electrical and Electronic Engineers (IEEE). He is also a recipient of the Technical
Achievement Award from the IEEE Computer Society.

Michael Goldwasser received his Ph.D. in Computer Science from Stanford
University in 1997. He is currently a Professor in the Department of Mathematics
and Computer Science at Saint Louis University and the Director of their Com-
puter Science program. Previously, he was a faculty member in the Department
of Computer Science at Loyola University Chicago. His research interests focus
on the design and implementation of algorithms, having published work involving
approximation algorithms, online computation, computational biology, and compu-
tational geometry. He is also active in the computer science education community.

Additional Books by These Authors

e M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java, Wiley.

e M.T. Goodrich, R. Tamassia, and D.M. Mount, Data Structures and Algorithms
in C++, Wiley.

e M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis, and
Internet Examples, Wiley.

e M.T. Goodrich and R. Tamassia, Introduction to Computer Security, Addison-
Wesley.

e M.H. Goldwasser and D. Letscher, Object-Oriented Programming in Python,
Prentice Hall.

Preface

Acknowledgments

We have depended greatly upon the contributions of many individuals as part of
the development of this book. We begin by acknowledging the wonderful team at
Wiley. We are grateful to our editor, Beth Golub, for her enthusiastic support of
this project, from beginning to end. The efforts of Elizabeth Mills and Katherine
Willis were critical in keeping the project moving, from its early stages as an initial
proposal, through the extensive peer review process. We greatly appreciate the
attention to detail demonstrated by Julie Kennedy, the copyeditor for this book.
Finally, many thanks are due to Joyce Poh for managing the final months of the
production process.

We are truly indebted to the outside reviewers and readers for their copious
comments, emails, and constructive criticism, which were extremely useful in writ-
ing this edition. We therefore thank the following reviewers for their comments and
suggestions: Claude Anderson (Rose Hulman Institute of Technology), Alistair
Campbell (Hamilton College), Barry Cohen (New Jersey Institute of Technology),
Robert Franks (Central College), Andrew Harrington (Loyola University Chicago),
Dave Musicant (Carleton College), and Victor Norman (Calvin College). We wish
to particularly acknowledge Claude for going above and beyond the call of duty,
providing us with an enumeration of 400 detailed corrections or suggestions.

We thank David Mount, of University of Maryland, for graciously sharing the
wisdom gained from his experience with the C++ version of this text. We are grate-
ful to Erin Chambers and David Letscher, of Saint Louis University, for their intan-
gible contributions during many hallway conversations about the teaching of data
structures, and to David for comments on early versions of the Python code base for
this book. We thank David Zampino, a student at Loyola University Chicago, for
his feedback while using a draft of this book during an independent study course,
and to Andrew Harrington for supervising David’s studies.

We also wish to reiterate our thanks to the many research collaborators and
teaching assistants whose feedback shaped the previous Java and C++ versions of
this material. The benefits of those contributions carry forward to this book.

Finally, we would like to warmly thank Susan Goldwasser, Isabel Cruz, Karen
Goodrich, Giuseppe Di Battista, Franco Preparata, loannis Tollis, and our parents
for providing advice, encouragement, and support at various stages of the prepa-
ration of this book, and Calista and Maya Goldwasser for offering their advice
regarding the artistic merits of many illustrations. More importantly, we thank all
of these people for reminding us that there are things in life beyond writing books.

Michael T. Goodrich
Roberto Tamassia
Michael H. Goldwasser

Preface e e e

Python Primer
1.1 Python Overview
1.1.1 The Python Interpreter
1.1.2 Preview of a Python Program
1.2 Objects in Python
1.2.1 lIdentifiers, Objects, and the Assignment Statement . . .
1.2.2 Creating and Using Objects
1.2.3 Python's Built-In Classes
1.3 Expressions, Operators, and Precedence
1.3.1 Compound Expressions and Operator Precedence
1.4 Control Flow
1.41 Conditionals
142 Loops e e
1.5 Functions
1.5.1 Information Passing
1.5.2 Python's Built-In Functions
1.6 Simple Input and Output
1.6.1 Console Input and Output
162 Files . o o v av v i v o v o5 d m v s 55 w6 % 43w s s
1.7 Exception Handling,
1.7.1 Raising an Exception
1.7.2 Catching an Exception
1.8 Iterators and Generators
1.9 Additional Python Conveniences
1.9.1 Conditional Expressions
1.9.2 Comprehension Syntax
1.9.3 Packing and Unpacking of Sequences
1.10 Scopes and Namespaces
1.11 Modules and the Import Statement
1.11.1 Existing Modules
112 Exercises e

Contents

Xii

Contents

2 Object-Oriented Programming 56
2.1 Goals, Principles, and Patterns 57
2.1.1 Object-Oriented Design Goals 57
2.1.2 Object-Oriented Design Principles 58
2.1.3 Design Patterns 61

2.2 Software Development 62
2.2) DESIED < v 5 v wn s 6 v S5 me e m s E Y s R 62
222 Pseudo-Code 64
2.2.3 Coding Style and Documentation 64
224 Testing and Debugging 67

2.3 Class Definitions 69
2.3.1 Example: CreditCard Class 69
2.3.2 Operator Overloading and Python’s Special Methods . . 74
2.3.3 Example: Multidimensional Vector Class 77
234 terators 79
235 Example: Range Class. 80

2.4 |Inheritance 82
241 Extending the CreditCard Class 83
2.4.2 Hierarchy of Numeric Progressions 87
243 Abstract Base Classes 93

2.5 Namespaces and Object-Orientation 96
2.5.1 Instance and Class Namespaces 96
2.5.2 Name Resolution and Dynamic Dispatch 100

2.6 Shallow and Deep Copying 101
2.7 Exercises 103
3 Algorithm Analysis 109
3.1 Experimental Studies 111
3.1.1 Moving Beyond Experimental Analysis 113

3.2 The Seven Functions Used in This Book 115
3.2.1 Comparing Growth Rates 122

3.3 Asymptotic Analysis L. 123
3.3.1 The "Big-Oh" Notation 123
3.3.2 Comparative Analysis 128
3.3.3 Examples of Algorithm Analysis 130

3.4 Simple Justification Techniques 137
341 ByExample . : <« w5 55 s 6 00 s o vmcme na one 137
342 The “Contra” Attack 137
3.4.3 Induction and Loop Invariants 138

3.5 Exercises 141

Contents

4 Recursion

4.1 lllustrative Examples
4.1.1 The Factorial Function
4.1.2 Drawing an English Ruler
413 BinarySearch,
414 FileSystems

4.2 Analyzing Recursive Algorithms

4.3 Recursion Run Amok
4.3.1 Maximum Recursive Depth in Python

4.4 Further Examples of Recursion.
44,1 Linear Recursion
442 Binary Recursion
443 Multiple Recursion

4.5 Designing Recursive Algorithms

4.6 Eliminating Tail Recursion

4.7 Exercises

5 Array-Based Sequences

5.1 Python's Sequence Types.
5.2 Low-Level Arrays.,
5.2.1 Referential Arrays
5.2.2 Compact Arrays in Python
5.3 Dynamic Arrays and Amortization
5.3.1 Implementing a Dynamic Array
5.3.2 Amortized Analysis of Dynamic Arrays
533 Python'sListClass
5.4 Efficiency of Python’s Sequence Types
5.4.1 Python's List and Tuple Classes
5.4.2 Python's String Class
5.5 Using Array-Based Sequences
5.5.1 Storing High Scores for a Game
5.5.2 Sorting a Sequence
5.5.3 Simple Cryptography
5.6 Multidimensional Data Sets
5.7 Exercises

6 Stacks, Queues, and Deques
6.1 Stacks
6.1.1 The Stack Abstract Data Type

6.1.2 Simple Array-Based Stack Implementation

6.1.3 Reversing Data Using a Stack
6.1.4 Matching Parentheses and HTML Tags

xiv

Contents

6.2 Queues 239
6.2.1 The Queue Abstract Data Type 240
6.2.2 Array-Based Queue Implementation 241

6.3 Double-Ended Queues 247
6.3.1 The Deque Abstract Data Type 247
6.3.2 Implementing a Deque with a Circular Array 248
6.3.3 Deques in the Python Collections Module 249

6.4 Exercises e 250
Linked Lists 255
7.1 Singly Linked Lists 256
7.1.1 Implementing a Stack with a Singly Linked List 261
7.1.2 Implementing a Queue with a Singly Linked List 264

7.2 Circularly Linked Lists 266
7.2.1 Round-Robin Schedulers 267
7.2.2 Implementing a Queue with a Circularly Linked List . . . 268

7.3 Doubly Linked Lists 270
7.3.1 Basic Implementation of a Doubly Linked List 273
7.3.2 Implementing a Deque with a Doubly Linked List 275

7.4 The Positional List ADT 277
7.4.1 The Positional List Abstract Data Type 279
7.4.2 Doubly Linked List Implementation 281

7.5 Sorting a Positional List 285
7.6 Case Study: Maintaining Access Frequencies 286
7.6.1 UsingaSortedList 286
7.6.2 Using a List with the Move-to-Front Heuristic 289

7.7 Link-Based vs. Array-Based Sequences 292
7.8 Exercises i i e 294
Trees 299
8.1 General Trees. 300
8.1.1 Tree Definitions and Properties 301
8.1.2 The Tree Abstract Data Type 305
8.1.3 Computing Depth and Height 308

8.2 Binary Trees 311
8.2.1 The Binary Tree Abstract Data Type 313
8.2.2 Properties of Binary Trees 315

8.3 Implementing Trees 317
8.3.1 Linked Structure for Binary Trees 317
8.3.2 Array-Based Representation of a Binary Tree 325
8.3.3 Linked Structure for General Trees 327

8.4 Tree Traversal Algorithms 328

Contents

8.4.1 Preorder and Postorder Traversals of General Trees . . .
8.4.2 Breadth-First Tree Traversal
8.4.3 Inorder Traversal of a Binary Tree
8.4.4 Implementing Tree Traversals in Python
8.4.5 Applications of Tree Traversals
8.4.6 Euler Tours and the Template Method Pattern x
8.5 Case Study: An Expression Tree
8.6 Exercises

Priority Queues
9.1 The Priority Queue Abstract Data Type
9.1.1 Priorities
9.1.2 The Priority Queue ADT
9.2 Implementing a Priority Queue
9.2.1 The Composition Design Pattern
9.2.2 Implementation with an Unsorted List
9.2.3 Implementation with a Sorted List
0.3 Heaps : : s o i w5 535 ¢ 5w s 28 GF. 26 s 56 af s &6 5 m i@
9.3.1 The Heap Data Structure
9.3.2 Implementing a Priority Queue with a Heap
9.3.3 Array-Based Representation of a Complete Binary Tree .
9.3.4 Python Heap Implementation
9.3.5 Analysis of a Heap-Based Priority Queue
9.3.6 Bottom-Up Heap Construction %
9.3.7 Python's heapg Module
9.4 Sorting with a Priority Queue
9.4.1 Selection-Sort and Insertion-Sort
942 Heap-Sort G B EEE
9.5 Adaptable Priority Queues
951 LOCALONS « o : sow s @ s 516 5 @ ¢ S @ %8 i 545 BAs
9.5.2 Implementing an Adaptable Priority Queue
9.6 Exercises

10 Maps, Hash Tables, and Skip Lists

10.1 Maps and Dictionaries
10.1.1 The Map ADT
10.1.2 Application: Counting Word Frequencies
10.1.3 Python's MutableMapping Abstract Base Class
10.1.4 QOurMapBase Class
10.1.5 Simple Unsorted Map Implementation

10.2 Hash Tables

xvi

Contents

10.2.2 Collision-Handling Schemes 417
10.2.3 Load Factors, Rehashing, and Efficiency 420
10.2.4 Python Hash Table Implementation 422
10.3Sorted Maps 427
10.3.1 Sorted Search Tables 428
10.3.2 Two Applications of Sorted Maps 434

10.4 Skip Lists 437
10.4.1 Search and Update Operations in a Skip List 439
10.4.2 Probabilistic Analysis of Skip Lists X 443

10.5 Sets, Multisets, and Multimaps 446
10.5.1 The Set ADT 446
10.5.2 Python's MutableSet Abstract Base Class 448
10.5.3 Implementing Sets, Multisets, and Multimaps 450
10.6 Exercises 452
11 Search Trees 459
11.1 Binary Search Trees 460
11.1.1 Navigating a Binary Search Tree 461
11.1.2 Searches 463
11.1.3 Insertions and Deletions 465
11.1.4 Python Implementation 468
11.1.5 Performance of a Binary Search Tree 473

11.2 Balanced Search Trees 475
11.2.1 Python Framework for Balancing Search Trees. 478
113 AVL Trees. it 481
11.3.1 Update Operations oo v 483
11.3.2 Python Implementation 488
11.4 Splay Trees e 490
11.4.1 Splaying 490
11.42 WhentoSplay. 494
11.4.3 Python Implementation 496
11.4.4 Amortized Analysis of Splaying % 497

11.5 (2,4) Trees i 502
11.5.1 Multiway Search Trees 502
11.5.2 (2,4)-Tree Operations 505
11.6 Red-Black Trees 512
11.6.1 Red-Black Tree Operations 514
11.6.2 Python Implementation 525

11.7 Exercises e e 528

