


PROCEEDINGS OF SPIE

SPIE—The International Society for Optical Engineering

Optical Pulse and
Beam Propagation II

Yehuda B. Band
Chair/Editor

25-27 January 2000
San Jose, California

Sponsored by
AFOSR—U.S. Air Force Office of Scientific Research
SPIE—The International Society for Optical Engineering

Published by
SPIE—The International Society for Optical Engineering

Volume 3927

SPIE is an international technical society dedicated to advancing engineering and scientific
applications of optical , photonic, imaging, electronic, and optoelectronic technologies.



The papers appearing in this book compose the proceedings of the technical conference cited on
the cover and title page of this volume. They reflect the authors' opinions and are published as
presented, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors or by SPIE. Papers were selected by the
conference program committee to be presented in oral or poster format, and were subject to
review by volume editors or program committees.

Please use the following format to cite material from this book:

Author(s), “Title of paper,” in Optical Pulse and Beam Propagation II, Yehuda B. Band, Editor,
Proceedings of SPIE Vol. 3927, page numbers (2000).

ISSN 0277-786X
ISBN 0-8194-3544-9

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone 360/676-3290 (Pacific Time) » Fax 360/647-1445

Copyright 2000, The Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use
of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized
by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this
volume is $15.00 per article (or portion thereof), which should be paid directly to the Copyright
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made
electronically through CCC Online at http://www.directory.nev/copyright/. Other copying for
republication, resale, advertising or promotion, or any form of systematic or multiple reproduction
of any material in this book is prohibited except with permission in writing from the publisher.
The CCC fee code is 0277-786X/00/$15.00.

Printed in the United States of America.



Contents

vii Conference Committee
SESSION 1 FIBER
2 Bragg soliton polarization evolution (Invited Paper) [3927-01]
R. E. Slusher, Lucent Technologies; S. Pereira, Univ. of Toronto (Canada); S. H. Spilter,
B. ). Eggleton, Lucent Technologies; J. E. Sipe, Univ. of Toronto (Canada)
9 Multiwavelength and multicolor temporal and spatial optical solitons (Invited Paper)

[3927-02]
Y. S. Kivshar, A. A. Sukhorukov, E. A. Ostrovskaya, Australian National Univ.; O. Bang,
Australian National Univ. and Technical Univ. of Denmark; C. B. Clausen, Technical Univ.
of Der!mark :

20 Analysis and design of wavelength-division multiplexed dispersion-managed soliton
transmission systems (Invited Paper) [3927-03]
M. Matsumoto, Osaka Univ. (Japan); A. Hasegawa, Kochi Univ. of Technology (Japan) and NTT
Science and Core Technology Lab. (Japan)

31 Dispersion management with fiber Bragg gratings [3927-04]
J. D. Ania-Castanon, P. Garcia-Fernandez, J. M. Soto-Crespo, Instituto de Optica (Spain)

39 Higher order adaptive filter characterization of microwave fiber optic link nonlinearity
[3927-06]
X. N. Fernando, A. B. Sesay, TRLabs (Canada)

SESSION 2 NONLINEAR

52 Pump-probe absorption spectra of small quantum dots [3927-102]
J. T. Andrews, P. K. Sen, Shri G S Institute of Technology and Science (India)

63 Modulation instabilities and stimulated Raman scattering in Nd**- and Er’*-doped fibers
by picosecond laser pulses [3927-103]
O. L. Antipov, Institute of Applied Physics (Russia); O. Mehl, H. J. Eichler, Technische Uriv.
Berlin (Germany)

72 Optical vortex solitons: generation, dynamics, and instabilities [3927-18]
Y. S. Kivshar, V. Tikhonenko, ). Christou, B. Luther-Davies, Australian National Univ.

81 Wide-beam high-power femtosecond pulse propagation in air [3927-19]

M. Kolesik, Univ. of Arizona; M. Mlejnek, Corning Inc.; J. V. Moloney, Univ. of Arizona;
E. M. Wright, Univ. of Arizona and Optical Sciences Ctr./Univ. of Arizona



90

103

117

SESSION 3A

Nonlinear atom optics: four-wave mixing (Invited Paper) [3927-20]

Y. B. Band, Ben-Gurion Univ. of the Negev (Israel) and National Institute of Standards

and Technology; M. Trippenbach, Ben-Gurion Univ. of the Negev (Israel) and Warsaw Univ.
(Poland); P. S. Julienne, National Institute of Standards and Technology

Short-pulse propagation in the presence of multiple two-photon resonances of xenon
[3927-21)
M. R. Junnarkar, N. Uesugi, NTT Basic Research Labs. (Japan)

Multihump vector optical spatial solitons [3927-22]
Z. Chen, M. C. Acks, San Francisco State Univ.; E. A. Ostrovskaya, Y. S. Kivshar, Australian
National Univ.

Formation of shock electromagnetic waves during femtosecond pulse propagation
in transparent solids [3927-23]

V. E. Gruzdev, A. S. Gruzdeva, S.I. Vavilov State Optical Institute (Russia)

BEAM PROPAGATION IN RANDOM MEDIA |

138

147

SESSION 3B

Double-passage resolution effects and their applications to imaging in random media (Invited
Paper) (3927-29]

R. Mazar, A. Bronshtein, Ben-Gurion Univ. of the Negev (Israel)

Wigner phase space distribution and coherence tomography (Invited Paper) [3927-105]
J. E. Thomas, F. Reil, K. F. Lee, A. Wax, S. Bali, Duke Univ.

Propagation of the optical Wigner function in random multiple-scattering media (Invited
Paper) [3927-106]

M. G. Raymer, C.-C. Cheng, Univ. of Oregon

BEAM PROPAGATION IN RANDOM MEDIA 11

166

179

195

207

Modeling the optical coherence tomography geometry using the extended Huygens-Fresnel
principle and Monte Carlo simulations (Invited Paper) [3927-107]

P. E. Andersen, L. Thrane, Rise National Lab. (Denmark); H. T. Yura, The Aerospace Corp;
A. Tycho, Technical Univ. of Denmark; T. M. Jergensen, Rise National Lab. (Denmark)

Coherent and polarization imaging: novel approaches in tissue diagnostics by laser light
scattering (Invited Paper) [3927-108]

D. A. Zimnyakov, V. V. Tuchin, Saratov State Univ. (Russia); R. A. Zdrajevsky, Saratov
Technical State Univ. (Russia); Y. P. Sinichkin, Saratov State Univ. (Russia)

Optical diffusion of focused beam wave pulses in discrete random media [3927-31]
A. D.Kim, A. Ishimaru, Univ. of Washington

Confocal imaging of biological tissues using second harmonic generation [3927-109]

B.-M. Kim, P. C. Stoller, Lawrence Livermore National Lab.; K. M. Reiser, Univ.

of California/Davis Medical Ctr.; J. P. Eichler, Technische Fachhochschule-Berlin (Germany);
M. Yan, A. M. Rubenchik, L. B. Da Silva, Lawrence Livermore National Lab.



SESSION 3C BEAM PROPAGATION IN RANDOM MEDIA 111

214 Aerosol of the marine environment (Invited Paper) [3927-32]
S. G. Gathman, Science and Technology Corp. and Space and Naval Warfare Systems Ctr.,
San Diego

(]
o
(o2}

Adapting atmospheric LIDAR techniques to imaging biological tissue (Invited Paper)
[3927-110]

J. F. Holmes, Oregon Graduate Institute of Science and Technology; S. L. Jacques, Oregon
Medical Laser Ctr.; J. M. Hunt, Oregon Graduate Institute of Science and Technology

"~
w
o

Vertical profiles of aerosol and optical turbulence stréngth and their effects on atmospheric
propagation [3927-33]
N.S. Kopeika, A. Zilberman, Ben-Gurion Univ. of the Negev (Israel)

240 Mean fade time of an optical communication channel under moderate-to-strong atmospheric
turbulence [3927-34]
M. A. Al-Habash, Univ. of Central Florida; L. C. Andrews, CREOL/Univ. of Central Florida;
R. L. Phillips, Univ. of Central Florida

SESSION 3D BEAM PROPAGATION IN RANDOM MEDIA IV

250 Virtues of Mueller matrix detection of objects embedded in random media (Invited Paper)
[3927-111]
G. W. Kattawar, Texas A&M Univ.

261 Mueller matrix imaging of targets in turbid media [3927-112]
M. ). Rakovié, G. W. Kattawar, Texas A&M Univ.

POSTER SESSION

274 Soliton transmission control in a system with up- and down-sliding filters [3927-05]
M. F.S. Ferreira, S. C. V. Latas, M. M. V. Facao, Univ. de Aveiro (Portugal)

285 Self-transparency effect of a laser beam propagating in a polymer dispersal liquid crystal
[3927-07)
L. Petti, IC-CNR (Italy) and Trinity College (Ireland); P. Mormile, IC-CNR (Italy); P. Musto,
G. Ragosta, IRTEMP-CNR (Italy); F. F. Simoni, Univ. di Ancona (ltaly)

292 Nonlinear tunneling of temporal and spatial optical solitons through organic thin films
and polymeric waveguides [3927-10]
V. N. Serkin, Benemerita Univ. Autonoma de Puebla (Mexico)

302 Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion

management [3927-11]
V. N. Serkin, Benemerita Univ. Autonoma de Puebla (Mexico); A. Hasegawa, Kochi Univ.
of Technology (Japan) and NTT Science and Core Technology Lab. (Japan)

314 Spatial and temporal soliton attractors in new polymeric waveguides [3927-12]
V. N. Serkin, Benemerita Univ. Autonoma de Puebla (Mexico)



vi

323

343

368

376

385

397

406
407

Maxwell's solitary waves: optical video solitons and wave second harmonics solitons
[3927-13])

V. N. Serkin, Benemerita Univ. Autonoma de Puebla (Mexico); E. M. Schmidt, Friedrich-
Schiller-Univ. Jena (Germany); T. L. Belyaeva, M. V. Lomonosov Moscow State Univ. (Russia)

Weak-nonlinear propagation of subpicosecond pulses in graded-index light guides with

a small longitudinal inhomogeneity [3927-14]

M. A. Bisyarin, St. Petersburg Univ. (Russia); I. A. Molotkov, Institute of Terrestrial Magnetism,
lonosphere, and Radio Wave Propagation (Russia)

Numerical diffraction modeling of light propagation in multicore fiber [3927-15]
A. P. Napartovich, N. N. Elkin, A. G. Sukharev, V. N. Troshchieva, D. V. Vysotsky, Troitsk
Institute for Innovation and Fusion Research (Russia)

Hollow fibers for Nd:YAG and excimer lasers [3927-16]
Y. Matsuura, T. Yamamoto, G. Takada, M. Miyagi, Tohoku Univ. (Japan)

High-power propagation effects in different designs of a Faraday isolator [3927-24]
E. A. Khazanov, Institute of Applied Physics (Russia)

Pulse pair propagation under conditions of induced transparency [3927-25]
V. G. Arkhipkin, L.V. Kirensky Institute of Physics (Russia); I. V. Timofeev, Krasnoyarsk State
Univ. (Russia)

Use of self-focusing effect for measurements of small (less than A/3000) wavefront distortions
[3927-28]
A. K. Poteomkin, A. Mal’shakov, Institute of Applied Physics (Russia)

Path integral model of light scattered by turbid media [3927-30]
M. ). Wilson, Univ. Hospital Birmingham (UK)

Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft
engine [3927-37]

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, Research Institute for Complex Testing

of Optoelectronié Devices (Russia); D. H. Titterton, Defence Evaluation and Research Agency
Farnborough (UK); T. A. Sheremet’eva, G. N. Filippov, Y. N. Yevchenko, Research Institute
for Complex Testing of Optoelectronic Devices (Russia)

Addendum
Author Index



Conference Committee

Conference Chair

Yehuda B. Band, Ben-Gurion University of the Negev (Israel)

Program Committee

Akira Hasegawa, Kochi University of Technology (Japan) and NTT Science and
Core Technology Laboratory (Japan)

Gordon S. Kino, Stanford University

Norman S. Kopeika, Ben-Gurion University of the Negev (Israel)

Jerzy S. Krasinski, Oklahoma State University

Session Chairs

1 Fiber
Akira Hasegawa, Kochi University of Technology (Japan) and NTT Science and
Core Technology Laboratory (Japan)

2 Nonlinear
Jerzy S. Krasinski, Oklahoma State University

3A Beam Propagation in Random Media |
Norman S. Kopeika, Ben-Gurion University of the Negev (Israel)

3B Beam Propagation in Random Media Il
Steven L. Jacques, Oregon Medical Laser Center

3C Beam Propagation in Random Media Il
Steven L. Jacques, Oregon Medical Laser Center

3D Beam Propagation in Random Media IV
Norman S. Kopeika, Ben-Gurion University of the Negev (Israel)

vil



SESSION 1

Fiber



[}

Invited Paper

Bragg Soliton Polarization Evolution
R. E. Slusher®, Suresh Pereira’, Stefan Spalter’, B. J. Eggleton®, and J E. Sipe®

“Lucent Technologies,
700 Mountain Avenue, Murray Hill, NJ 07974 USA

bDepar’cment of Physics, University of Toronto,
Ontario, Canada M5S1A7

ABSTRACT

Nonlinear propagation of optical pulses in fiber Bragg gratings is studied experimentally and with numerical simulations of
the coupled mode equations. After a review of enhanced nonlinear interactions for pulse wavelengths near the short
wavelength edge of the photonic bandgap associated with the grating. this study explores polarization evolution during
nonlinear pulse propagation. Initial results for polarization instabilities and expectations for vector Bragg solitons are
described.

Keywords: fiber gratings, solitons. birefringence, polarization instability
1. BRAGG SOLITONS

Many of the nonlinear ppﬁml pulse propagation phenomena observed in standard optical fiber. including solitons' and
polarization instabilities™, can aiso be found in fiber gratings. However, the fiber grating allows strong variation in the
propagation parameters over a limited span of wavelengths near the one-dimensional photonic bandgap formed by the grating
resulting in nonlinear pulse evolution in much shorter distances than in normal fiber.

The photonic bandgap for the fiber gratings used in the experiments described in this paper is shown in Figure 1. The
transmission through the fiber grating goes nearly to zero within the photonic bandgap that extends over approximately 0.17
nm in wavelength, corresponding to an index modulation for the grating of An = 2x10™. We will focus our attention on

wavelengths outside the bandgap near the short wavelength gap edge. There are actually two bandgaps seen in Figure 1
corresponding to input polarizations along the fast and slow principle polarization axes. The birefringence of the grating is

Anpe = ny-ny (1)

where n, and 111 are the indices along the fast and slow polarization axes respectively. For the grating used in our experiments
An,, =3.6x107.

Examples of the parameters that can be varied by tuning the wavelength-of the optical pulse relative to the photonic bandgap
are the group velocity,

vg = v(E-1)"f @)

where v is the pulse velocity in the fiber with no grating and f is the detuning from the edge of the photonic bandgap in units
of half-gap measured from the center of the fast axis gap. and the dispersion

B2 = [(1-(ve/V) ) (ve/v) IVK 5

where K = 1t An/, is the half bandgap in units of cm:'and ), is the free space wavelength. Note that v, goes to zero at the
gap edge. The dispersion near the gap can be nearly 107 higher than in normal fiber. This means that optical solitons can be

Correspondence: R. E. Slusher. Other author information: R. E. S.: Email: res:@bell-labs.com: Telephone: (908)582-4094; Fax: (908)582-3260.
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formed in a few centimeters instead of hundreds of meters required for normal fiber. Of course, very high optical intensities
are required in order to compensate the large dispersion with nonlinear interactions in such short distances. However we have
shown previously that the effective nonlinearity is also enhanced by a factor

Fa = (3- (vg/v))) / 2(vg/v)? ©)

This nonlinear enhancement is typically a factor near two for detuning near the gap. The amount of enhancement is limited
by the spread of frequencies in the optical pulse. When these frequency components approach the gap, they begin to be
reflected from the grating and the intensity propagating through the grating is reduced. We minimize these reflection effects
in our experiments by using an apodized grating. The effective birefringence can also increase for wavelengths near the gap.
This increase is associated with the increased interaction time as the group velocity decreases.

We have shown' that, even though the dispersion is changing rapidly near the gap, one can approximate the pulse dynamics
with a nonlinear Schréedinger equation where the nonlinear interaction and dispersion are enhanced by the factors show in
Egs. (3) and (4). We have previously demonstrated propagating solitons experimentally'. This paper extends the
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Figure 1 The transmission of the fiber grating is shown for the fast X axis (open circles) and the slow Y axis (solid
squares). The difference in the band-gaps is predominately at the long wavelength edge and corresponds to a birefringence
of 3.6x10. The resolution is limited by the optical pulse width of 0.03nm. The small difference in gap widths at the long
wavelength edge was very reproducible in spite of the limiting resolution. ’



nonlinear pulse propagation study to include polarization effects that result from the grating birefringence. We can
approximate the dynamics of the system using a set of two, coupled nonlinear Schréedinger equations’,

1(6/at+w ol )X + 1/2 wy aZX/az2+{u spm| X| + o epm| Y | 1X + e Y 2ygiot (5)
0/ 0t + 0y 02)Y + 12 0y 7Y / 02+{Wspm| Y |2+ 0Wepm | X |2} X + 2pc X 2Y * '= 0 (6)

where X and Y are the polarized field components along the principal polarization axes, ¢ = 2(k,-k,) is the wave-vector
mismatch between the two polarizations, z is the propagation direction and the o coefficients corresponding to self phase
modulation (spm), cross phase modulation (cpm), and phase conjugation (pc) are in the ratio axspm:axcpfn: ctxpc= 3:2:1. The
polarization fields are centered around the frequencies w, and @, whose numerical values are equal, but whose derivatives
(with respect to the corresponding wave-vectors) representing the group velocity and dispersion, will be unequal due to
birefringence. Furthermore, the wave-vectors, k. and k,, associated with the polarization fields will be different due to
birefringence. Energy exchange between the two polarization components proceeds via the last term in both equations. A
more rigorous set of four coupled equations® is used for numerical simulations that model our experiments.

2. EXPERIMENTAL APPARATUS

The experimental arrangement is shown in Figure 2 The pulsed light source is a Q-switched mode-locked YLF laser that
produces 80ps wide pulses at 1053nm wavelengths '. The center position of the bandgap is tuned with respect to the laser
wavelength by straining the fiber. The frequency components of the opuml pulse are primarily outside the photonic bandgap
in contrast to recent nonlinear polarization switching experiments . A fast detector and sampling oscilloscope resolve the
pulse shapes. An energy meter measures the incident pulse energies. The pulse spectral width, near 0.03nm, limits the
resolution of the data shown in Figure 1.

Vé

X lee= 7.7 CM
lgng = 6 CM

Pol

P Fast
ulse Photodiode
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‘ .
Q-Switched Sampling
""""" Mode Locked YLF | - Scope

Figure 2 Schematic diagram of the experimental apparatus

The input polarization state of the optical pulse is set by the combined orientations of a half-wave and quarter-wave plate
immediately before the input focusing lens. The measured output polarization is selected using a half-wave plate and a linear
polarizer after the fiber grating.

The fiber grating has an overall length of 7.7 cm with 0.75 cm apodized sections at both ends. This apodization eliminates
reflection for wavelengths near the gap edge as seen in Figure 1. The average grating index is very nearly constant throughout
the entire fiber. The fiber ends are cleaved so that there is less than 1 mm of normal fiber at each end in order to simplify the



analysis of the nonlinear interactions. The grating birefringence is much larger than the normal fiber birefringence due to the
UV grating writing process. We find, that in addition to offset X and Y gaps, that fast X gap is 3% smaller than the slow Y
gap. This results in a near alignment of the short wavelength X and Y gap edges. This further simplifies our experimental
analysis since the fast and slow polarization pulse components are nearly equally reflected from the gap edge and experience
nearly equal dispersion and nonlinear enhancements (see Egs. (2) and (3)). The near coincidence of the short wavelength
bandgaps results in a nearly constant effective birefringence as the pulse wavelengths approach the gap.

Linear pulse propagation measurements are made using peak pulse intensities less than 0.5 GW/cm® where nonlinear effects
are negligible. The intensities used in the nonlinear experiments were limited to less than 10 GW/cm® in order to avoid
damaging the grating.

3. POLARIZATION EVOLUTION

Polarized pulse experiments are complex since the polarization state evolves throughout the pulse for both the linear and
nonlinear pulse intensity regimes. Both the ellipticity and the angular orientation of the polarization ellipse vary during the
pulse. In principle the Stokes vector can be measured during the pulse, but this requires six different settings of the measured
polarization states. The measurements reported here were made only along the principle polarization axes. The complex pulse
polarization states do allow a good determination of the polarization properties of the grating. We fit our linear experimental
pulse shapes with numerically modeled shapes in order to determine the grating birefringence at both the long and short
wavelength edges of the grating. These measurements yield a birefringence of 3.6x10, which is consistent with the results
shown in Figure 1.

At peak pulse intensities above 5 GW/cm? the nonlinear index change, n,I, where n,= 2.6x10"'® cm?*W is the nonlinear index
of refraction for silica and I is the peak pulse intensity, becomes comparable with the birefringence. At these intensities we
expect a polarization instability>>. The instability results in a transfer of energy from the fast polarization component to the
slow component. The terms responsible for the energy exchange in the nonlinear Schroedinger equations can be seen as the
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Figure 3 Pulse shapes for the X (dotted) and Y (solid) polarization components after transmission through the fiber
grating with equal input peak intensities of 4 GW/cm® in each polarization component. The square root of the
intensity ratio, the ellipticity is shown as a dashed curve with the scale on the right axis.



last terms in Egs (5) and (6). An example of the instability obscrved experimentally for our fiber grating is shown in Figure 3.
The input X and Y components are both equal at 4 GW/cm? in this example. Note that there is a clear transfer ofenergy to
the slow Y component after propagating through the grating. The ratio of the pulse amplitudes along the major and minor
axes of the polarization ellipse, i.e. the ellipticity, shown as a dashed curve in Figure 3, illustrates the evolution of the
polarization state during the pulse.

The polarization instability is most dramatic for input polarizations aligned nearly along the fast axis. If the input polarization
is aligned near the slow axis, it only rotates slightly further toward the slow axis. These effects are shown in Figure 4 for the
two extreme alignment cases. Note the strong conversion from the fast axis to the slow axis in comparing Figure 4 (a) and
(c), while there is little change in the angular orientation of the polarization in (b) and (d) where the input polarization is near
the slow axis. The detuning in Figure 4 is f = 1.2 and there is significant pulse narrowing. This narrowing is typical of the
detuning range between f = 3 and f = 1.2. As the detuning decreases to f = 1.1 or lower, a significant fraction of the input
pulse is reflected from the grating and the intensity in the grating is significantly reduced for smaller detunings. This reduced
intensity decreases the nonlinear interactions and the pulse width increases, first back to its initial width and then it broadens
for even smaller detunings due to the strong grating dispersion.

We find that the threshold for the polarization instability decreases as the pulse wavelength is tuned toward the short
wavelength edge of the photonic bandgap. For detunings near f = 1.3 the threshold is reduced by approximately a factor of
three relative to the threshold for detunings larger than f = 4, where the threshold is nearly equal to that predicted for fiber
with the grating birefringence but no enhancement in nonlinearity or birefringence. This decreased threshold for wavelengths
near the gap is in agreement with our numerical models. It is also consistent with the enhancement of the effective
nonlinearity given by Eq. (3) and the relative insensitivity of the birefringence for tuning close to the gap. Our numerical
modeling also shows that this enhancement depends on asymmetry of the X and Y gaps shown in Figure 1. For symmetric X
and Y gap widths the simulations predict that the enhancement is significantly less.

For longer pulse lengths with correspondingly narrower frequency spreads, the simulations show that over an order of
magnitude decrease in the polarization instability threshold can be achieved. These large decreases in the threshold are a
result of being able to tune very close to the bandgap edge and still avoid reflection from the grating when the pulse
frequency spread is very small.

At the long wavelength edge of the gap, normal dlspemon, combined with the nonlinear interaction, results in pulse
broadening as the intensity is increased to the nonlinear regime'. The birefringence is larger at the long wavelength gap edge
because of the asymmetry in the fast and slow gap widths for our experimental parameters. The net result of these differences
between the short and long wavelength edges of the gap is that the threshold intensity for the polarization instability increases
as the pulse wavelength is tuned near the long wavelength gap edge.

In our experiments the effective birefringence and grating length correspond to less than a polarization beat period, i.e.
2L (ny-ny)/ Ao ~ /2 %)
where L is the grating length. The optimum length for the polarization instability is near one beat period™.

For applications it is interesting that the intensity, corresponding to the input energy, required to switch a significant fraction
of the pulse energy from the fast to the slow axis can be made very low by tailoring the grating birefringence to be small. Of
course, when the birefringence is decreased, the grating must be made correspondingly longer in order to obtain a beat length
in the grating. A practical optical switching device based of this effect would require switching energies in the picojoule
regime instead of the hundreds of nanojoules used in the present experiments. Optical switching will probably be interesting
for pulse widths near one picosecond and wavelengths near 1.5 microns. The wide pulse spectrum of a picosecond pulse
would require a correspondingly wider grating gap width near 10 nm. Larger gap widths and much larger nonlinear
coefficients can be obtained using a combination of waveguide geometries and materials with much larger nonlinear
coefficients than silica fiber. Examples of materials with nonlinearities at least 500 times that of silica glass at 1.5 micron
wavelengths are AlGaAs, chalcogenide glasses and cascaded second-order nonlinearities in LiNbO;. All of these materials
can be formed into waveguides at least a few centimeters in length with relatively low linear losses. Gratings with large index
modulation can be lithographically etched into these waveguides. Birefringence in the waveguide gratings should be
relatively simple to design for specific values. Since the waveguide mode areas can be significantly less than those in optical



fiber, the required intensity for optical switching with picojoule energy inputs seems to be within reach. The nonlinear losses
in these materials are also reasonably low for optical switching applications.
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Figure 4 Pulse shapes for the X and Y polarization components transmitted in the linear regime are shown for the
polarization predominantly along the fast X axis (a) and predominantly along the slow Y axis (b). The nonlinearly
transmitted pulse shapes corresponding to (a) and (b) are shown in (c) and (d) respectively. The peak pulse intensity
in (c) and (d) is approximately 4 GW/cm’ along each axis. The detuning in all cases is f = 1.2. The fast and slow
components are in phase at the input face of the fiber.

4. VECTOR BRAGG SOLITONS

When the detuning is near f = 1.1 and the polarization is aligned exactly along one of the principle axes, the lowest order

Bragg soliton can be generated at peak pulse intensities near 10 GW/cm’. The Bragg soliton formauon length is
approximately'

7= 0.322nt.2 | B2 | . @)

where 7. is the pulse width of the emerging soliton. For 7. = 80ps and a detuning value near f = 1.2, this formation length is
near 2 cm. Our grating length of 6 cm does not allow full evolution into a soliton, but the formation length is much less than



in fiber without a grating. A study of the soliton formation process is certainly possible for our experimental grating
parameters.

It is very interesting that for our grating parameters the polarization instability dominates the pulse dynamics unless the
polarization is very near the slow axis or exactly along the fast axis. The polarization instability threshold intensity tends to
be lower than the Bragg soliton formation intensity. Since the birefringence can be adjusted by the grating fabrication
process, this means that the threshold for the polarization instability can be set relative to the threshold for Bragg soliton
formation along the fast or slow axis.

Soliton formation for the gmcral vector case of both fast and slow polarization components has been studied for the normal
fiber case both theoretically’ and experimentally®. The energy exchange between the fast and slow components varies with
the relative phase between the fast and slow components as can be seen from the energy exchange terms in Egs. (5) and (6).
For example, for a phase shift between the fast and slow components of 7/2 and a given angle between the fast and slow
components we expect a soliton to evolve from the coupled nonlinear Schréedinger equations for a specific input pulse shape
and energy. Experiments and numerical modeling are in progress for the study of vector Bragg solitons.
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ABSTRACT

We present an overview of several novel types of multi-component envelope solitary waves that appear in fiber and
waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber
transmission systems for high performance computer networks, multi-colour parametric spatial solitary waves due
to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlat-
tices.

Keywords: Envelope optical solitons, cascaded nonlinearities, multistep cascading, bit- parallel wavelength trans-
mission systems, Fibonacci superlattnces

1. INTRODUCTION

Recent progress in the design and manufacture of optical fiber wavelength-division-multiplexing (WDM) systems is
a result of worldwide demand for ultra-high bit-rate transmission and communication. This explains the growing
interest from the soliton community to study the pulse propagation in the soliton-based optical fiber communication
systems, and remarkable progress has been demonstrated in recent years.! On one hand, the recent results include
the application of the concept of the dispersion management to soliton-based optical transmission systems and the
discovery of the so-called dispersion managed soliton. On the other hand, this progress involves the development
of completely new concepts for pulse dense packing and increased bit-rate per channel techniques. One such new
concept is the bit-parallel-wavelength pulse transmission for very high bandwidth computer communications that
offers many of the advantages of both parallel fiber ribbon cable and conventional WDM systems.?

Rapid progress in the study of temporal solitons in fiber systems has been dbserved in parallel with impressive
research on their spatial counterparts, spatial optical solitons. One of the key concepts in this field came from the
theory of multi-frequency wave mixing and cascaded nonlinearities where a nonlinear phase shift is produced as a
result of the parametric wave interaction.® In all such systems, the nonlinear interaction between the waves of two
(or more) frequencies is the major physical effect that supports coupled-mode solitary waves.

The main purpose of this contribution is to overview several different physical examples of multi-mode and/or
multi-frequency solitary waves that oceur in the pulse or veai propagation in nonlinear optical fibers and wa cguides.
For these purposes, we select three different, but physically interesting cases, multi-wavelength solitary waves in bit-
parallel-wavelength optical fiber links, multi-colour spatial solitons due to multistep cascading in optical waveguides
with quadratic nonlinearities, and quasiperiodic solitons in the Fibonacci superlattices. We believe these examples
display both the diversity and richness of the multi-mode soliton systems, and they will allow further progress to be
made in the study of nonlinear waves in multi-component nonintegrable physical models.
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