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Preface

The first course in analysis which follows elementary calculus is a
critical one for students who are seriously interested in mathematics.
Traditional advanced calculus was precisely what its name indicates—a
course with topics in calculus emphasizing problem solving rather than
theory. As a result students were often given a misleading impression of
what mathematics is all about; on the other hand the current approach,
with its emphasis on theory, gives the student insight in the fundamentals
of analysis.

In A First Course in Real Analysis we present a theoretical basis of
analysis which is suitable for students who have just completed a course in
elementary calculus. Since the sixteen chapters contain more than enough
analysis for a one year course, the instructor teaching a one or two quarter
or a one semester junior level course should easily find those topics which
he or she thinks students should have.

The first Chapter, on the real number system, serves two purposes.
Because most students entering this course have had no experience in
devising proofs of theorems, it provides an opportunity to develop facility
in theorem proving. Although the elementary processes of numbers are
familiar to most students, greater understanding of these processes is
acquired by those who work the problems in Chapter 1. As a second
purpose, we provide, for those instructors who wish to give a comprehen-
sive course in analysis, a fairly complete treatment of the real number
system including a section on mathematical induction.

Although Chapter 1 is useful as an introduction to analysis, the instruc-
tor of a short course may choose to begin with the second Chapter.
Chapters 2 through 5 cover the basic theory of elementary calculus. Here
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Preface

we prove many of the theorems which are “stated without proof” in the
standard freshman calculus course.

Crucial to the development of an understanding of analysis is the
concept of a metric space. We discuss the fundamental properties of metric
spaces in Chapter 6. Here we show that the notion of compactness is
central and we prove several important results (including the Heine-Borel
theorem) which are useful later on. The power of the general theory of
metric spaces is aptly illustrated in Chapter 13, where we give the theory of
contraction mappings and an application to differential equations. The
study of metric spaces is resumed in Chapter 15, where the properties of
functions on metric spaces are established. The student will also find useful
in later courses results such as the Tietze extension theorem and the
Stone-Weierstrass theorem, which are proved in detail.

Chapters 7, 8, and 12 continue the theory of differentiation and integra-
tion begun in Chapters 4 and 5. In Chapters 7 and 8, the theory of
differentiation and integration in R, is developed. Since the primary
results for R, are given in Chapters 4 and 5 only modest changes were
necessary to prove the corresponding theorems in R,. In Chapter 12 we
define the Riemann-Stieltjes integral and develop its principal properties.

Infinite sequences and series are the topics of Chapters 9 and 10.
Besides subjects such as uniform convergence and power series, we provide
in Section 9.5 a unified treatment of absolute convergence of multiple
series. Here, in a discussion of unordered sums, we show that a separate
treatment of the various kinds of summation of multiple series is entirely
unnecessary. Chapter 10 on Fourier series contains a proof of the Dini test
for convergence and the customary theorems on term-by-term differentia-
tion and integration of such series.

In Chapter 14 we prove the Implicit Function theorem, first for a single
equation and then for a system. In addition we give a detailed proof of the
Lagrange multiplier rule, which is frequently stated but rarely proved. For
completeness we give the details of the proof of the theorem on the change
of variables in a multiple integral. Since the argument here is rather
intricate, the instructor may wish to assign this section as optional reading
for the best students.

Proofs of Green’s and Stokes’ theorems and the divergence theorem in
R, and R; are given in Chapter 16. The methods used here are easily
extended to the corresponding results in R,,.

This book is also useful in freshman honors courses. It has been our
experience that honors courses in freshman calculus frequently falter
because it is not clear whether the honors student should work hard
problems while he learns the regular calculus topics or should omit the
regular topics entirely and concentrate on the underlying theory. In the
first alternative, the honors student is hardly better off than the regular
student taking the ordinary calculus course, while in the second the honors
student fails to learn the simple problem solving techniques which, in fact,
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are useful later on. We believe that this dilemma can be resolved by
employing two texts—one a standard calculus text and the other a book
such as this one which provides the theoretical basis of the calculus in one
and several dimensions. In this way the honors student gets both theory
and practice. Chapters 2 through 5 and Chapters 7 and 8 provide a
thorough account of the theory of elementary calculus which, along with a

standard calculus book, is suitable as text material for a first year honors
program.

M. H. PROTTER
C. B.

Berkeley, January 1977 MORREY, JR.
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The real number system

1.1 Axioms for a field

In an elementary calculus course the student learns the techniques of
differentiation and integration and the skills needed for solving a variety of
problems which use the processes of calculus. Most often, the principal
theorems upon which calculus is based are stated without proof, while
some of the auxiliary theorems are established in detail. To compensate for
the missing proofs, most texts present arguments which show that the basic
theorems are plausible. Frequently, a remark is added to the effect that
rigorous proofs of these theorems can be found in advanced texts in
analysis.

In this and the next four chapters we shall give a reasonably rigorous
foundation to the processes of the calculus of functions of one variable.
Calculus depends on the properties of the real number system. Therefore,
to give a complete foundation for calculus, we would have to develop the
real number system from the beginning. Since such a development is
lengthy and would divert us from our aim of presenting a course in
analysis, we shall assume the reader is familiar with the usual properties of
the system of real numbers.

In this section we present a set of axioms that forms a logical basis for
those processes of elementary algebra upon which calculus is based. Any
collection of objects satisfying the axioms stated below is called a field. In
particular the system of real numbers satisfies the field axioms, and we
shall indicate how the customary laws of algebra concerning addition,
subtraction, multiplication, and division follow from these axioms.

A thorough treatment would require complete proofs of all the theo-
rems. In this section and the next we establish some of the elementary laws
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1: The real number system

of algebra, and we refer the reader to a course in higher algebra where
complete proofs of most of the theorems may be found. Since the reader is
familiar with the laws of algebra and their use, we shall assume their
validity throughout the remainder of the text. In addition, we shall suppose
the reader is familiar with many facts about finite sets, positive integers,
and so forth.

Throughout the book, we use the word equals or its symbol = to stand
for the words “is the same as.” The reader should compare this with other
uses for the symbol = such as that in plane geometry where, for example,
two line segments are said to be equal if they have the same length.

Axioms of addition and subtraction

A-1. Closure property. If a and b are numbers, there is one and only one
number, denoted a + b, called their sum.

A-2. Commutative law. For any two numbers a and b, the equality

b+a=a+b
holds.

A-3. Associative law. For all numbers a, b, and c, the equality

(a+b)y+c=a+(b+c)
holds.

A-4. Existence of a zero. There is one and only one number 0, called zero,
such that a + 0= a for any number a.

It is not necessary to assume in Axiom A-4 that there is only one number
0 with the given property. The uniqueness of this number is easily estab-
lished. Suppose 0 and 0" are two numbers such that ¢ +0=a and
a + 0" = a for every number a. Then 0+ 0'=0 and 0' + 0 = (". By Axiom
A-2, we have 0+ 0’'= 0"+ 0 and so 0 = 0'. The two numbers are the same.

A-5. Existence of a negative. If a is any number, there is one and only one
number x such that a + x = 0. This number is called the negative of a and
is denoted by —a.

As in Axiom A-4, it is not necessary to assume in Axiom A-5 that there
is only one such number with the given property. The argument which

establishes the uniqueness of the negative is similar to the one given after
Axiom A-4.

Theorem 1.1. If a and b are any numbers, then there is one and only one
number x such that a + x = b. This number x is given by x = b + (— a).



1.1: Axioms for a field

ProOF. We must establish two results: (i) that b+ (—a) satisfies the
equation a + x = b and (ii) that no other number satisfies this equation. To
prove (i), suppose that x = b + (—a). Then, using Axioms A-2 through A-4
we see that

at+x=a+[b¥(—a)]=a+[(—a)+b]=[a+(—a)]+b=0+b=b.
Therefore (i) holds. To prove (ii), suppose that x is some number such that
a + x = b. Adding (— a) to both sides of this equation, we find that
(a+x)+(—a)=b+ (—a).
Now,
(a+x)+(—a)=a+[x+(—a)] =a+[(—a)+x]
=[a+(—a)] +x=0+x=x.
We conclude that x = b+ (—a), and the uniqueness of the solution is
established. O
Notation. The number b + (— a) is denoted by b — a.

Thus far addition has been defined only for two numbers. By means of
the associative law we can define addition for three, four and, in fact, any
finite number of elements. Since (a + b) + ¢ and a + (b + ¢) are the same,
we define a + b + ¢ as this common value. The following lemma is an easy
consequence of the associative and commutative laws of addition.

Lemma 1.1. If a, b, and c are any numbers, then
a+b+c=a+c+b=b+a+c=b+c+a=c+a+b=c+b+a.

The formal details of writing out a proof are left to the reader.
The next lemma is useful in the proof of Theorem 1.2 below.
Lemma 1.2. If a, b, ¢, and d are numbers, then
(a+c)+(b+d)=(a+b)+ (c+d).
ProOF. Using Lemma 1.1 and the axioms, we have
(a+c)+(b+d)=[(a+c)+b]+d
=(at+c+b)+d=(a+b+c)+d
=[(a+b)+c]+d=(a+b)+ (c+d). O

Theorem 1.2

(1) If a is a number, then —(—a) = a.
(i) If a and b are numbers, then

—(a+b)=(—a)+ (D).
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PrOOF. (i) From the definition of negative, we have
(—a)+[—(—a)]=0, (—a)+a=a+(—a)=0.

Axiom A-5 states that the negative of (—a) is unique. Therefore, a =
—(—a). To establish (ii), we know from the definition of negative that

(a+b)+[—(a+b)]=0.
Furthermore, using Lemma 1.2, we have
(a+b)+[(—a)+(—b)]=[a+(—a)]+[b+(—b)]=0+0=0.
The result follows from the “only one” part of Axiom A-5. O

Theorem 1.2 can be stated in the familiar form: (i) The negative of (— a)
is a, and (i) The negative of a sum is the sum of the negatives.

Axioms of multiplication and division.

M-1. Closure property. If a and b are numbers, there is one and only one
number, denoted by ab (or a X b or a-b), called their product.

M-2. Commutative law. For every two numbers a and b, the equality

ba = ab
holds.

M-3. Associative law. For all numbers a, b, and c, the equality
(ab)c = a(bc)
holds.

M-4. Existence of a unit. There is one and only one number u, different from
zero, such that au = a for every number a. This number u is called the unit
and (as is customary) is denoted by 1.

M-5. Existence of a reciprocal. For each number a different from zero there
is one and only one number x such that ax = 1. This number x is called
the reciprocal of a (or the inverse of a) and is denoted by a™' (or 1/ a).

Remarks. Axioms M-1 through M-4 are the parallels of Axioms A-1
through A-4 with addition replaced by multiplication. However, M-5 is not
the exact analogue of A-5, since the additional condition a % 0 is required.
The reason for this is given below in Theorem 1.3, where it is shown that
the result of multiplication of any number by zero is zero. In familiar terms
we say that division by zero is excluded.
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