BIMLEIER ﬂ%%ﬁk%ﬂﬂ%@%

i T— Gz T AT

hrﬁﬁ SHE

| CONCEPTS IN |
PROGRAMMING LANGUAGES

B John C. Mitchell

?ﬁ%%ﬂ% hR #t
Higher Education Press

R TR

ESMEAEfE EBFE LS BAR R HFA

RFIEHE SR
(RENRRD

CONCEPTS IN PROGRAMMING
LANGUAGES

John C. Mitchell

e sas s

E=F: 01-2004-1250 =

Concepts in Programming Languages
John C. Mitchell

AR ABRAELE 4 N RIEME K ORATAHE (AEEHEEE. W.I1RH1TE
DA R [57 DA R Ho A DO

Originally published by Cambridge University Press in 2003.

This reprint edition is published with the permission of the Syndicate of the Press of the University of
Cambridge, Cambridge, England.

JER R £ SR Ko AR A T 2003 4R HAR

2R ED ARt S5 B ST RO SIBF K R SR B R ABUR BN «

Concepts in Programming Languages by John C. Mitchell, Copyright © Cambridge University Press 2003
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing
agreements, no reproduction of any part may take place without the written permission of Cambridge
University Press.

EEEMME (CI1P) HiE

B 3iTHE S & = Concepts in Programming Lang
uages / () KUK (Mitchell,]J.C.) . —EIZ. .
b5 BEHE B, 2004.8

ISBN 7—-04 -015779 -9

I.2... IT.%k. I[I.BFES %X
IV.TP312

H [hi A P 548 CIP $HE % (2004)26 070685 5

BEHE At mﬂ#ﬂ& 010 — 64054588

H R % 17

U AETEREXEIIRE 4 S E®AE 800 - 810 - 0598
BRBI4RAL 100011 pa ik htip: /7 www. hep. edu. cii
B Hl 010 - 82028899 http: / www. hep. com. cn
= FHEPBEIERIT

B Rl deRANSCERRIT

#F & 787x1092 1/16 iR X 2004 4E 8 A 1 ki

B % 33.75 XX 2004 4F 8 A% 1 KENRI
F ¥ 650000 E #t 42.007T

25 a0 R T BB T T 46 O IR (DA, T S AR T TR R A
IBRBRFTH WK

th KR % BA

20 AR, Uit EAfo@E BR A RENE ERFRER A REHF. B, £5,
FEAXMEFLETRAY. ERASEARNAELE RN A, #37 HREEEE
FLhHEHGRRE, A FFERERT RN ER.

B2 A, AREHFREMAN WTO, ZEZVHERFE 2% Emls. RER
RELERE 20 HERARBTRELR, B5RAERML, RE50F. ER2LL
ERM, EARKEZE. BRERMNEBEEEREESLWERGE 26, BAH
HERATEEBEFERAAGREAKE. SIHEMER LB AEERMN, EHE
FHFRBEHTFRAERRRTERY, RATHBAMPERAMBREOEERARA
ARBN—REEEH#,

A, BERERDHERTHRA G L FREERFRBEARAM NS HRET
fE. FMRHTHRER, —REFAT, —RERNE. EHSHT G LR
FRAGNH#EMERANSHT, ERREHME, F - HERTBEERT LS
W20 ZR5 AHMELHLENK. XERABIREZE T EHFTE, REHFRDOR
HRERBFEARAREFL LR AW LR R B E AR EBRART RN S
R, RERTENEREEHFRRBTN —RAT, TENMELEREEN, SER
FIXERBMML. XEHMEATESE THENAFEEERE VW BEREEL, KATR
B, RAGH. EHABREFRERE.

BH, HEHREELE 35 FIBREBSI THEMREFRNER, X4E mkEHRE
RBFERAANEEEREZ — ARERGERORFE T, LLEREERAKY
HRFRERE, BERFTHRMALNREAX L RORGEROHITRERE T —H
MENREBREFERS, EREALHK, U BERGEERTFBIGERY.

RMAFLRLHEFAH GG HER, A TREREHFFRE AR ERAR G HFEA
P, BAEEREHKTHZE, MRER-—AMEAEFRESLINEREEEHERA
T, REPROGBAER. FERNGKRE) KEFfE AT RAT 05 # THER
HERNELAZEN, BRI R: hep.cs@263.net.

BEHRT H R
—O0Z=# A

Preface

A good programming language is a conceptual universe for
thinking about programming.
Alan Perlis, NATO Conference on Software
Engineering Techniques, Rome, 1969

Programming languages provide the abstractions, organizing principles, and control
structures that programmers use to write good programs. This book is about the
concepts that appear in programming languages, issues that arise in their implemen-
tation, and the way that language design affects program development. The text is
divided into four parts:

® Part 1: Functions and Foundations

® Part 2: Procedures, Types, Memory Management, and Control

® Part 3: Modularity, Abstraction, and Object-Oriented Programming
W Part 4: Concurrency and Logic Programming

Part 1 contains a short study of Lisp as a worked example of programming language
analysis and covers compiler structure, parsing, lambda calculus, and denotational
semantics. A short Computability chapter provides information about the limits of
compile-time program analysis and optimization.

Part 2 uses procedural Algol family languages and ML to study types, memory
management, and control structures.

In Part 3 we look at program organization using abstract data types, modules, and
objects. Because object-oriented programming is the most prominent paradigm in
current practice, several different object-oriented languages are compared. Separate
chapters explore and compare Simula, Smalltalk, C++, and Java.

Part 4 contains chapters on language mechanisms for concurrency and on logic
programming.

The book is intended for upper-level undergraduate students and beginning
graduate students with some knowledge of basic programming. Students are ex-
pected to have some knowledge of C or some other procedural language and some

Preface

acquaintance with C++ or some form of object-oriented language. Some experience
with Lisp, Scheme, or ML is helpful in Parts 1 and 2, although many students have
successfully completed the course based on this book without this background. It
is also helpful if students have some experience with simple analysis of algorithms
and data structures. For example, in comparing implementations of certain con-
structs, it will be useful to distinguish between algorithms of constant-, polynomial-,
and exponential-time complexity.

After reading this book, students will have a better understanding of the range of
programming languages that have been used over the past 40 years, a better under-
standing of the issues and trade-offs that arise in programming language design, and a
better appreciation of the advantages and pitfalls of the programming languages they
use. Because different languages present different programming concepts, students
will be able to improve their programming by importing ideas from other languages
into the programs they write.

Acknowledgments

This book developed as a set of notes for Stanford CS 242, a course in programming
languages that I have taught since 1993. Each year, energetic teaching assistants
have helped debug example programs for lectures, formulate homework problems,
and prepare model solutions. The organization and content of the course have been
improved greatly by their suggestions. Special thanks go to Kathleen Fisher, who
was a teaching assistant in 1993 and 1994 and taught the course in my absence in
1995. Kathleen helped me organize the material in the early years and, in 1995,
transcribed my handwritten notes into online form. Thanks to Amit Patel for his
initiative in organizing homework assignments and solutions and to Vitaly Shmatikov
for persevering with the glossary of programming language terms. Anne Bracy, Dan
Bentley, and Stephen Freund thoughtfully proofread many chapters.

Lauren Cowles, Alan Harvey, and David Tranah of Cambridge University Press
were encouraging and helpful. I particularly appreciate Lauren’s careful reading and
detailed comments of twelve full chapters in draft form. Thanks also are due to the
reviewers they enlisted, who made a number of helpful suggestions on early versions
of the book. Zena Ariola taught from book drafts at the University of Oregon several
years in a row and sent many helpful suggestions; other test instructors also provided
helpful feedback.

Finally, special thanks to Krzystof Apt for contributing a chapter on logic
programming.

John Mitchell

B E =

HEHE W BAERKEN A BERE LR/ BRI, B REFTHE S BT Y ER(PE
A RILFE ZEERGE) , HAT I A K A A B A R 5T AT BT, ¥ sUE 3B 19 AR 8 5T
ML I T4 HGET R EE R GENL , B REF RABRBERARER, K4t
BB BT BPER T A ENL R B R LR B M DANL T HTEE. SR A LA
ERBAAT R, A B R 2 AR AR R R 2 IR A DA B

RBMEREBIE: (010) 58581897/58581896/58581879

& E: (010) 82086060

E - mail: dd@hep. com.cn

BEMUE . LT ARXESNIKRE 45

HEHE B R ITHEERDAE
Hp 4% 100011

W iE R T IS : (010)64014089 64054601 64054588

a@;§=g%$
HERE A
wEEY %
HEEIt % M

HIEENH AL

Contents

Preface page ix

Part 1 Functions and Foundations

1 Introduction 3
1.1 Programming Languages 3
1.2 Goals 5
1.3 Programming Language History 6
1.4 Organization: Concepts and Languages 8
2 Computability 10
2.1 Partial Functions and Computability 10
2.2 Chapter Summary 16
Exercises 16
3 Lisp: Functions, Recursion, and Lists 18
3.1 Lisp History 18
3.2 Good Language Design 20
3.3 Brief Language Overview 22
3.4 Innovations in the Design of Lisp 25
3.5 Chapter Summary: Contributions of Lisp 39
Exercises 40
4 Fundamentals 48
4.1 Compilers and Syntax 48
4.2 Lambda Calculus 57
4.3 Denotational Semantics 67
4.4 Functional and Imperative Languages 76
4.5 Chapter Summary 82

Exercises 83

Contents

Part 2 Procedures, Types, Memory Management, and Control

5 The Algol Family and ML 93
5.1 The Algol Family of Programming Languages a3

5.2 The Development of C 99

5.3 The LCF System and ML 101

5.4 The ML Programming Language 103

5.5 Chapter Summary 121
Exercises 122

6 Type Systems and Type Inference 129
6.1 Types in Programming 129

6.2 Type Safety and Type Checking 132

6.3 Type Inference 135

6.4 Polymorphism and Overloading 145

6.5 Type Declarations and Type Equality 151

6.6 Chapter Summary 155
Exercises 156

7 Scope, Functions, and Storage Management 162
7.1 Block-Structured Languages 162

7.2 In-Line Blocks 165

7.3 Functions and Procedures 170

7.4 Higher-Order Functions 182

7.5 Chapter Summary 190
Exercises 191

8 Control in Sequential Languages 204
8.1 Structured Control 204

8.2 Exceptions 207

8.3 Continuations 218

8.4 Functions and Evaluation Order 223

8.5 Chapter Summary 227
Exercises 228

Part 3 Modularity, Abstraction, and Object-Oriented Programming

9 Data Abstraction and Modularity 235
9.1 Structured Programming 235

9.2 Language Support for Abstraction 242

9.3 Modules 252

9.4 Generic Abstractions 259

9.5 Chapter Summary 269
Exercises 271

10 Concepts in Object-Oriented Languages 277
10.1 Object-Oriented Design 277

10.2 Four Basic Concepts in Object-Oriented Languages 278

Contents vii

10.3 Program Structure 288
10.4 Design Patterns 290
10.5 Chapter Summary 292
10.6 Looking Forward: Simula, Smalltalk,
C++, Java 293
Exercises 294
11 History of Objects: Simula and Smalitalk 300
11.1 Origin of Objects in Simula 300
11.2 Objects in Simula 303
11.3 Subclasses and Subtypes in Simula 308
11.4 Development of Smalltalk 310
11.5 Smalltalk Language Features 312
11.6 Smalltalk Flexibility 318
11.7 Relationship between Subtyping and
Inheritance 322
11.8 Chapter Summary 326
Exercises 327
12 Objects and Run-Time Efficiency: C++ 337
12.1 Design Goals and Constraints 337
12.2 Overview of C++ 340
12.3 Classes, Inheritance, and Virtual Functions 346
12.4 Subtyping 355
12.5 Multiple Inheritance 359
12.6 Chapter Summary 366
Exercises 367
13 Portabllity and Safety: Java 384
13.1 Java Language Overview 386
13.2 Java Classes and Inheritance 389
13.3 Java Types and Subtyping 396
13.4 Java System Architecture 404
13.5 Security Features 412
13.6 Java Summary 417
Exercises 420

Part 4 Concurrency and Logic Programming

14 Concurrent and Distributed Programming 431
14.1 Basic Concepts in Concurrency 433
14.2 The Actor Model 441
14.3 Concurrent ML 445
14.4 Java Concurrency 454
14.5 Chapter Summary 466

Exercises 469

viii Contents

15 The Logic Programming Paradigm and Prolog

15.1 History of Logic Programming
15.2 Brief Overview of the Logic Programming Paradigm
15.3 Equations Solved by Unification as Atomic Actions
15.4 Clauses as Parts of Procedure Declarations
15.5 Prolog’s Approach to Programming
15.6 Arithmetic in Prolog
15.7 Control, Ambivalent Syntax, and Meta-Variables
15.8 Assessment of Prolog
15.9 Bibliographic Remarks

15.10 Chapter Summary

Appendix A Additional Program Examples
A.1 Procedural and Object-Oriented Organization

Glossary
Index

475

475
476
478
482
486
492
496
505
507
507

509
509

521
525

PART 1
R

Functions and Foundations

.
F bl — *I. i
' o
' g
) :
B
PRERT o
) i
’ .
r
g
e
\ 1 9 .
; ',p-_ll” i
L
T |y
it g
4.
-y
{ "R
.
'
[L Tial
. S
2. W
I\
1 - SR
= il\- pat
& .
4 T
Ay I
S rELhE
e 21
B e
iy A
.t
& AU
{ AL R
- ..Lv |
‘ i
g BN B
ST S
ot it
o L
LA '
oAy =Ty
2 INE i
5] | N
! o = T
S LI
I
AR T
'_|._| T
LIt e
j',;- '3 Y
q” 4
| W
i] i
Lo L= (U
] N EE
L AL L.
a i
g B
F . -1

5i o o

+

1] .:!‘,\‘u Jf:
. dfe
7 i .

X
i

i ils
B

Introduction

“The Medium Is the Message”
Marshall McLuhan

1.1 PROGRAMMING LANGUAGES

Programming languages are the medium of expression in the art of computer pro-
gramming. An ideal programming language will make it easy for programmers to
write programs succinctly and clearly. Because programs are meant to be under-
stood, modified, and maintained over their lifetime, a good programming language
will help others read programs and understand how they work. Software design and
construction are complex tasks. Many software systems consist of interacting parts.
These parts, or software components, may interact in complicated ways. To man-
age complexity, the interfaces and communication between components must be
designed carefully. A good language for large-scale programming will help program-
mers manage the interaction among software components effectively. In evaluating
programming languages, we must consider the tasks of designing, implementing, test-
ing, and maintaining software, asking how well each language supports each part of
the software life cycle.

There are many difficult trade-offs in programming language design. Some lan-
guage features make it easy for us to write programs quickly, but may make it harder
for us to design testing tools or methods. Some language constructs make it easier for
a compiler to optimize programs, but may make programming cumbersome. Because
different computing environments and applications require different program char-
acteristics, different programming language designers have chosen different trade-
offs. In fact, virtually all successful programming languages were originally designed
for one specific use. This is not to say that each language is good for only one purpose.
However, focusing on a single application helps language designers make consistent,
purposeful decisions. A single application also helps with one of the most difficult
parts of language design: leaving good ideas out.

4

Introduction

Even if you do not use many of the programming languages in this book, you
may still be able to put the conceptual framework presented in these languages to
good use. When I was a student in the mid-1970s, all “serious” programmers (at my
university, anyway) used Fortran. Fortran did not allow recursion, and recursion was
generallyregarded as tooinefficient to be practical for “real programming.” However,
the instructor of one course I took argued that recursion was still an important idea
and explained how recursive techniques could be used in Fortran by managing data
in an array. I am glad I took that course and not one that dismissed recursion as an
impractical idea. In the 1980s, many people considered object-oriented programming
too inefficient and clumsy for real programming. However, students who learned
about object-oriented programming in the 1980s were certainly happy to know about

1.2 Goals

these “futuristic” languages in the 1990s, as object-oriented programming became
more widely accepted and used.

Although this is not a book about the history of programming languages, there is
some attention to history throughout the book. One reason for discussing historical
languages is that this gives us a realistic way to understand programming language
trade-offs. For example, programs were different when machines were slow and
memory was scarce. The concerns of programming language designers were therefore
different in the 1960s from the current concerns. By imaging the state of the art in
some bygone era, we can give more serious thought to why language designers made
certain decisions. This way of thinking about languages and computing may help
us in the future, when computing conditions may change to resemble some past
situation. For example, the recent rise in popularity of handheld computing devices
and embedded processors has led to renewed interest in programming for devices
with limited memory and limited computing power.

When we discuss specific languages in this book, we generally refer to the original
or historically important form of a language. For example, “Fortran” means the
Fortran of the 1960s and early 1970s. These early languages were called Fortran I,
Fortran II, Fortran III, and so on. In recent years, Fortran has evolved to include
more modern features, and the distinction between Fortran and other languages has
blurred to some extent. Similarly, Lisp generally refers to the Lisps of the 1960s,
Smalltalk to the language of the late 1970s and 1980s, and so on.

1.2 GOALS

In this book we are concerned with the basic concepts that appear in modern pro-
gramming languages, their interaction, and the relationship between programming
languages and methods for program development. A recurring theme is the trade-off
between language expressiveness and simplicity of implementation. For each pro-
gramming language feature we consider, we examine the ways that it can be used
in programming and the kinds of implementation techniques that may be used to
compile and execute it efficiently.

1.2.1 General Goals

In this book we have the following general goals:

® To understand the design space of programming languages. This includes con-
cepts and constructs from past programming languages as well as those that may
be used more widely in the future. We also try to understand some of the ma-
jor conflicts and trade-offs between language features, including implementation
costs.

m Todevelop a better understanding of the languages we currently use by comparing
them with other languages.

m To understand the programming techniques associated with various language
features. The study of programming languages is, in part, the study of conceptual
frameworks for problem solving, software construction, and development.

Introduction

Many of the ideas in this book are common knowledge among professional pro-
grammers. The material and ways of thinking presented in this book should be
useful to you in future programming and in talking to experienced programmers
if you work for a software company or have an interview for a job. By the end of the
course, you will be able to evaluate language features, their costs, and how they fit
together.

1.2.2 Specific Themes
Here are some specific themes that are addressed repeatedly in the text:

® Computability: Some problems cannot be solved by computer. The undecidabil-
ity of the halting problem implies that programming language compilers and
interpreters cannot do everything that we might wish they could do.

W Static analysis: There is a difference between compile time and run time. At
compile time, the program is known but the input is not. At run time, the program
and the input are both available to the run-time system. Although a program
designer or implementer would like to find errors at compile time, many will not
surface until run time. Methods that detect program errors at compile time are
usually conservative, which means that when they say a program does not have
a certain kind of error this statement is correct. However, compile-time error-
detection methods will usually say that some programs contain errors even if
errors may not actually occur when the program is run.

m Expressiveness versus efficiency: There are many situations in which it would be
convenient to have a programming language implementation do something auto-
matically. An example discussed in Chapter 3 is memory management: The Lisp
run-time system uses garbage collection to detect memory locations no longer
needed by the program. When something is done automatically, there is a cost.
Although an automatic method may save the programmer from thinking about
something, the implementation of the language may run more slowly. In some
cases, the automatic method may make it easier to write programs and make pro-
gramming less prone to error. In other cases, the resulting slowdown in program
execution may make the automatic method infeasible.

1.3 PROGRAMMING LANGUAGE HISTORY

Hundreds of programming languages have been designed and implemented over
the last 50 years. As many as 50 of these programming languages contained new
concepts, useful refinements, or innovations worthy of mention. Because there are
far too many programming languages to survey, however, we concentrate on six
programming languages: Lisp, ML, C, C++, Smalltalk, and Java. Together, these
languages contain most of the important language features that have been invented
since higher-level programming languages emerged from the primordial swamp of
assembly language programming around 1960.

The history of modern programming languages begins around 1958-1960 with
the development of Algol, Cobol, Fortran, and Lisp. The main body of this book

