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Preface

The purpose of this book is to serve as a tool for practitioners of Lie algebra
and Lie group theory, i.e., for those who apply Lie algebras and Lie groups to solve
problems arising in science and engineering. It is not intended to be a textbook
on Lie theory, nor is it oriented towards one specific application, for instance the
analysis of symmetries of differential equations. We restrict our attention to finite-
dimensional Lie algebras over the fields of complex and real numbers.

In any application Lie algebras typically arise as sets of linear operators that
commute with a given operator, say the Hamiltonian of a physical system. Alter-
natively, Lie groups arise as groups of (local) transformations leaving some object
invariant; the corresponding Lie algebra then consists of vector fields generating
1-parameter subgroups. The object may be for instance the set of all solutions
of a system of equations. The equations can be differential, difference, algebraic
or integral ones, or some combination of such equations. They may be linear or
nonlinear. In any case, the Lie algebra is realized by some operators in a basis that
is usually not the standard one and that depends crucially on the manner in which
it was obtained. The structure constants of Lie algebras can be calculated in any
basis, but they in turn are basis dependent and reveal very little about the actual
structure of the given Lie algebra.

After the Lie algebra g associated with a studied problem is found, the next task
that faces the researcher is to identify the Lie algebra as an abstract Lie algebra.
In some cases g may be isomorphic to a known algebra given in some accessible
list. This is certainly the case for semisimple Lie algebras in view of Cartan’s
classification of all simple Lie algebras over the complex numbers, and subsequent
classification of their real forms.

The fundamental Levi theorem, stating that every finite dimensional Lie algebra
is isomorphic to a semidirect sum of a semisimple Lie algebra and the maximal
solvable ideal (the radical) greatly simplifies the task of identifying a given Lie
algebra. The weak link is that no complete classification of solvable Lie algebras
exists, nor can one be expected to be produced in the future.

The problem addressed in this book is that of transforming a randomly ob-
tained basis of a Lie algebra into a “canonical basis” in which all basis independent
features of the Lie algebra are directly visible. For low dimensional Lie algebras (of
dimension less or equal six) this makes it possible to identify the Lie algebra com-
pletely. In this book we give a representative list of all such Lie algebras. As stated
above, in any dimension a complete identification can be performed for semisimple
Lie algebras. We also describe some classes of nilpotent and solvable Lie algebras
of arbitrary finite dimensions for which a complete classification exists and hence
an exact identification is possible.
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The book has four parts. The first presents some general results and concepts
that are used in the subsequent chapters. In particular such invariant notions as the
dimension of ideals in the characteristic series, and the invariants of the coadjoint
representation are introduced.

In Part 2 we present algorithms that accomplish the following tasks:

(1) An algorithm for determining whether the algebra g can be decomposed
into a direct sum. If g is decomposable the algorithm provides a basis in which g
is explicitly decomposed into a direct sum of indecomposable Lie subalgebras.

(2) A further algorithm is presented to find the radical R(g) and the Levi
factor, i.e., the semisimple component of g.

(3) If the Lie algebra is solvable, for instance if it is the radical of a larger
algebra, then it is necessary to identify its nilradical, i.e., the maximal nilpotent
ideal. A rational (i.e., avoiding calculation of eigenvalues) algorithm for performing
this is presented.

The text includes many examples illustrating various situations that may arise
in such computations. All these algorithms have been implemented on computers.

Part 3 is devoted to solvable and nilpotent Lie algebras. While a complete
classification of such algebras seems not to be feasible, it is possible to take a class
of nilpotent Lie algebras and construct all extensions of these algebras to solvable
ones. Finite-dimensional solvable Lie algebras with Abelian, Heisenberg, Borel,
filiform and quasifiliform nilradicals are presented in Part 3.

Part 4 of the book consists of tables of all indecomposable Lie algebras of
dimension n where 1 < n < 6. They are ordered in such a way as to make
the identification of any given low-dimensional Lie algebra written in an arbitrary
basis as simple as possible. Any Lie algebra up to dimension 6 is isomorphic to
precisely one entry in the tables. Essential characteristics of each algebra including
its Casimir invariants are also provided.

The book is based on material that was previously dispersed in journal arti-
cles, many of them written by one or both of the authors of this book together
with collaborators. The tables in Part 4 are based on older results and have been
independently verified, in some cases corrected, unified and ordered by structural
properties of the algebras (rather than by the way they were originally obtained).

Libor Snobl and Pavel Winternitz



Acknowledgements

Our research was funded by multiple sources during the years it took us to
write this book. Research of L. Snobl was supported by the postdoctoral fellowship
of the Centre de recherches mathématiques, Université de Montréal in 2004 — 2006.
Next, his research at Czech Technical University in Prague was funded mainly by
the research plans MSM210000018 and MSM6840770039 of the Ministry of Edu-
cation of the Czech Republic. The research of P. Winternitz was partly supported
by research grants from NSERC of Canada. LS thanks the Centre de recherches
mathématiques, Université de Montréal for hospitality during numerous visits there
while working on the manuscript. PW thanks the Faculty of Nuclear Sciences and
Physical Engineering, Czech Technical University in Prague for hospitality during
his visits there.

We thank Professors I. Anderson, A. G. Elashvili, J. Patera, Dr. A. Bihlo and
D. Karasek for interesting and helpful discussions. We also thank all our colleagues
and students with whom we collaborated on the results that are presented in this
book.

We are particularly indebted to A. Montpetit for his efficient help in transform-
ing our manuscript into a publishable book. We also thank Ms. I. Mette of AMS
Book Acquisitions for keeping us on track.

L. Snobl dedicates this book to his parents Libuse and Zdenék. P. Winternitz
dedicates this book to his wife Milada and his sons Peter and Michael. We both
thank them for their support and encouragement.

xi






Contents

Preface

Acknowledgements

Part 1. General Theory
Chapter 1. Introduction and Motivation

Chapter 2. Basic Concepts

2.1. Definitions
2.2 Levi theorem
2.3 Classification of complex simple Lie algebras
2.4. Chevalley cohomology of Lie algebras
Chapter 3. Invariants of the Coadjoint Representation of a Lie Algebra
=1 Casimir operators and generalized Casimir invariants
3.2. Calculation of generalized Casimir invariants using the infinitesimal
method
3.3. Calculation of generalized Casimir invariants by the method of

moving frames

Part 2. Recognition of a Lie Algebra Given by Its Structure
Constants

Chapter 4. Identification of Lie Algebras through the Use of Invariants
4.1. Elementary invariants
4.2. More sophisticated invariants

Chapter 5. Decomposition into a Direct Sum
5.1, General theory and criteria
5.2 Algorithm
5.3. Examples

Chapter 6. Levi Decomposition. Identification of the Radical and Levi
Factor
6.1. Original algorithm
6.2. Modified algorithm
6.3. Examples

Chapter 7. The Nilradical of a Lie Algebra
7.1 General theory
7.2 Algorithm

xi

11
11
17
17
20

23
23

24

32

37

39
39
42

47
47
56
57

63
63
65
66

il
71
75



vi

7.3.
74,

CONTENTS

Examples 79
Identification of the nilradical using the Killing form 84

Part 3. Nilpotent, Solvable and Levi Decomposable Lie Algebras 87

Chapter 8. Nilpotent Lie Algebras 89
8.1. Maximal Abelian ideals and their extensions 89
8.2. Classification of low-dimensional nilpotent Lie algebras 93

Chapter 9. Solvable Lie Algebras and Their Nilradicals 99
9.1. General structure of a solvable Lie algebra 99
9.2, General procedure for classifying all solvable Lie algebras with a

given nilradical 99
9.3. Upper bound on the dimension of a solvable extension of a given

nilradical 103
9.4. Particular classes of nilradicals and their solvable extensions 105
9.5. Vector fields realizing bases of the coadjoint representation of a

solvable Lie algebra 106

Chapter 10. Solvable Lie Algebras with Abelian Nilradicals 107
10.1.  Basic structural theorems 107
10.2.  Decomposability properties of the solvable Lie algebras 114
10.3.  Solvable Lie algebras with centers of maximal dimension 116
10.4.  Solvable Lie algebras with one nonnilpotent element and an

n-dimensional Abelian nilradical 121
10.5.  Solvable Lie algebras with two nonnilpotent elements and

n-dimensional Abelian nilradical 123
10.6.  Generalized Casimir invariants of solvable Lie algebras with Abelian

nilradicals 125

Chapter 11. Solvable Lie Algebras with Heisenberg Nilradical 131
11.1.  The Heisenberg relations and the Heisenberg algebra 131
11.2.  Classification of solvable Lic algebras with nilradical h(m) 132
11.3.  The lowest dimensional casc m = 1 134
11.4.  The case m = 2 135
11.5.  Generalized Casimir invariants 136

Chapter 12. Solvable Lie Algebras with Borel Nilradicals 141
12.1.  Outer derivations of nilradicals of Borel subalgebras 141
12.2.  Solvable extensions of the Borel nilradicals NR(b( g)) 146
12.3.  Solvable Lie algebras with triangular nilradicals 153
12.4.  Casimir invariants of nilpotent and solvable triangular Lie algebras 162

Chapter 13.  Solvable Lie Algebras with Filiform and Quasifiliform Nilradicals 175
13.1.  Classification of solvable Lie algebras with the model filiform

nilradical n,, 1 176
13.2.  Classification of solvable Lie algebras with the nilradical n,, » 182
13.3.  Solvable Lie algebras with other filiform nilradicals 189
13.4.  Example of an almost filiform nilradical 190

13.5.

Generalized Casimir invariants of n, 3 and of its solvable extensions 199



CONTENTS vii

Chapter 14. Levi Decomposable Algebras 203
14.1.  Levi decomposable algebras with a nilpotent radical 204
14.2.  Levi decomposable algebras with nonnilpotent radicals 207
14.3.  Levi decomposable algebras of low dimensions 208

Part 4. Low-Dimensional Lie Algebras 215

Chapter 15. Structure of the Lists of Low-Dimensional Lie Algebras 217
15.1.  Ordering of the lists 217
15.2. Computer-assisted identification of a given Lie algebra 218

Chapter 16. Lie Algebras up to Dimension 3 225
16.1.  One-dimensional Lie algebra 225
16.2.  Solvable two-dimensional Lie algebra with the nilradical ny , 225
16.3.  Nilpotent three-dimensional Lie algebra 225
16.4.  Solvable three-dimensional Lie algebras with the nilradical 2n; ; 226
16.5.  Simple three-dimensional Lie algebras 226

Chapter 17. Four-Dimensional Lie Algebras 227
17.1.  Nilpotent four-dimensional Lie algebra 227
17.2.  Solvable four-dimensional algebras with the nilradical 3n, ; 227
17.3.  Solvable four-dimensional Lie algebras with the nilradical nj ; 228
17.4.  Solvable four-dimensional Lie algebras with the nilradical 2n ; 229

Chapter 18. Five-Dimensional Lie Algebras 231
18.1.  Nilpotent five-dimensional Lie algebras 231
18.2.  Solvable five-dimensional Lie algebras with the nilradical 4n ; 232
18.3.  Solvable five-dimensional Lie algebras with the nilradical ng ; & nq 1235
18.4.  Solvable five-dimensional Lie algebras with the nilradical ny; 239
18.5. Solvable five dimensional Lie algebras with the nilradical 3nq 4 240
18.6.  Solvable five-dimensional Lie algebras with the nilradical ng 4 241
18.7.  Five-dimensional Levi decomposable Lie algebra 241

Chapter 19. Six-Dimensional Lie Algebras 243
19.1.  Nilpotent six-dimensional Lie algebras 243
19.2.  Solvable six-dimensional Lie algebras with the nilradical 5ny 4 248
19.3.  Solvable six-dimensional Lie algebras with the nilradical ng; & 2n; ;253
19.4.  Solvable six-dimensional Lie algebras with the nilradical ny 3 @ ny 1 266
19.5.  Solvable six-dimensional Lie algebras with the nilradical ns ; 271
19.6.  Solvable six-dimensional Lie algebras with the nilradical nj > 277
19.7.  Solvable six-dimensional Lie algebras with the nilradical ns 3 279
19.8.  Solvable six-dimensional Lie algebras with the nilradical n; 4 283
19.9.  Solvable six-dimensional Lie algebras with the nilradical ns 5 285
19.10. Solvable six-dimensional Lie algebra with the nilradical nsg 286
19.11. Solvable six-dimensional Lie algebras with the nilradical 4n; 286
19.12. Solvable six-dimensional Lie algebras with the nilradical nz; & n; ; 293
19.13. Solvable six-dimensional Lie algebra with the nilradical ny; 296
19.14. Simple six-dimensional Lie algebra 296
19.15. Six-dimensional Levi decomposable Lie algebras 296



CONTENTS

viii

Bibliography 299

Index 305



Part 1

General Theory






CHAPTER 1

Introduction and Motivation

Lie groups and Lie algebras appear in science in many different guises. They
may be a priori parts of the theory, like Lorentz or Galilei invariance of most physical
theories, or the (semi)simple Lie groups of the Standard model in particle theory.

Alternatively, specific Lie groups may appear as consequences of specific dy-
namics. Consider any physical system with dynamics described by a system of
ordinary or partial differential equations. This system of equations will be invari-
ant under some local Lie group of local point transformations, taking solutions into
solutions. This symmetry group G and its Lie algebra g can be determined in an
algorithmic manner [86]. The Lie algebra g is obtained as an algebra of vector fields,
usually in some nonstandard basis, depending on the way in which the algorithm
is applied.

An immediate task is to identify the algebra found as being isomorphic to some
known abstract Lie algebra. To do this we must transform it to a canonical basis in
which all basis independent properties are manifest. Thus, if g is decomposable into
a direct sum, it should be explicitly decomposed into components that are further
indecomposable

(1.1) 9=90109:2D D gr.

Each indecomposable component must be further identified. Let g now denote such
an indecomposable Lie algebra. A fundamental theorem due to E. E. Levi [59,71]
tells us that any finite-dimensional Lie algebra can be represented as the semidirect
sum

(1.2) g=p>dt, [p,pl=p, [e,t]Cr, [p,t]Cr,

where the subalgebra p is semisimple and v is the radical of g, i.e., its maximal
solvable ideal. If g is simple, we have t = 0 (an indecomposable semisimple al-
gebra is actually simple). If g is solvable, we have p = 0. Algorithms realizing
decompositions (1.1), (1.2) exist [102] and are presented below.

In view of the Levi theorem (1.2) the classification of all finite-dimensional Lie
algebras can be reduced to three steps:

(1) Classification of all simple Lie algebras. This also provides a classification
of all semisimple ones.

(2) Classification of all solvable Lie algebras.

(3) Classification of all possible linear actions of the semisimple algebra p on
the radical t.

Semisimple Lie algebras over the field of complex numbers C have been com-
pletely classified by W. Killing and E. Cartan [22,60], over the field of real num-
bers R by E. Cartan in [20,21] (the analysis in the real case was later simplified by
F. Gantmacher in [50]).
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The third step is basically a task of the representation theory of semisimple Lie
algebras. The main unsolved problem is the classification of all finite dimensional
solvable Lie algebras, a task that does not have a realistic solution. Even all nilpo-
tent Lie algebras are impossible to classify. (For instance in [127] the authors claim
that they have found 24 168 nonisomorphic 9-dimensional nilpotent algebras Lie
algebras with a maximal Abelian ideal of dimension 7 alone.) A realistic partial
classification problem is to classify all solvable Lie algebras with a given nilradical
of an arbitrary finite dimension n. So far this has been done for certain series of
nilpotent Lie algebras, namely Abelian, Heisenberg and Borel nilradicals, as well
as certain filiform and quasifiliform algebras. The results of the original articles
[83,84,106,115-118, 123,124] are presented in a unified manner in Part 3 of this
book.

An interesting physical application of the classification of low-dimensional
Lie algebras is in general relativity. Indeed, the classification of Einstein spaces
according to their isometry groups [95] is based on the work of Bianchi and his
successors [6,65]. The Petrov classification concerns Einstein spaces of dimension 4
and hence involves isometry groups of relatively low dimensions [95,120]. String
theory, brane cosmology and some other elementary particle theories going beyond
the standard model require the use of higher-dimensional spaces. Any attempt at a
Lie group classification of such spaces will require knowledge of higher-dimensional
Lie groups, including solvable ones.

One of the very useful applications of Lie group analysis in science is the
identification of seemingly different problems that are mathematically equivalent.
Indeed, let us consider two systems, say (A) and (B), of differential equations

EMNX,U;0x,Ua, 0%, x,Uas---) =0,
EB(# 1,0, 0,02 , Ua,-..) =0,

J)Ix] QY
(1.3) X=(X1,....X,), U=(,...,U,),
&= (s 5 vy Bp)s U= (Bage sy 8g)s
1<a<N, 1<a<gqg, 1<4,73,...<p

of the same order describing different physical processes. From the mathematical
viewpoint, we may consider these two systems equivalent if there exists a local
invertible transformation of the independent and dependent variables

(1.4) X = N(&, 1), Us=Qa(,)

transforming the systems (A) and (B) into each other. The transformation (1.4)
together with the mapping between the spaces of functions @(z) and U(X) induced
by it is called a point transformation.

A necessary condition for the equivalence of the systems (A) and (B) is that
they have isomorphic Lie algebras of infinitesimal point symmetries g4 and gg.
The algebras g4 and gp are by construction realized by vector fields in variables
(X,U) and (%, ), respectively.

If g4 and gp are isomorphic then a local point transformation (1.4) may exist
such that it transforms the vector fields of g4 into those of gg and vice versa. The
transformation is unique up to point transformations leaving g4 or gp invariant.
In any case, the transformation taking ga into gg will also take the system (A)



