

中空结构无机功能材料

INORGANIC FUNCTIONAL MATERIALS WITH HOLLOW INTERIORS

刘小鹤 马仁志 李星国 著 Liu Xiaohe Ma Renzhi Li Xingguo

中空结构无机功能材料

INORGANIC FUNCTIONAL MATERIALS WITH HOLLOW INTERIORS

图书在版编目(CIP)数据

中空结构无机功能材料/刘小鹤,马仁志,李星国著.

一长沙:中南大学出版社,2015.7 ISBN 978-7-5487-1740-9

I.中...Ⅱ.①刘...②马...③李...Ⅲ.中空纤维-纳米材料-无机材料-功能材料 IV.TB321

中国版本图书馆 CIP 数据核字(2015)第 159791

中空结构无机功能材料

刘小鹤 马仁志 李星国 著

□责任编辑 □责任印制 □出版发行		社址:长沙市麓山南路	邮编:410083
□ Ep	装	发行科电话:0731-88876770 长沙超峰印务有限公司	传真:0731-88710482
□开□版□ □书□定	次 号	720×1000 1/16 □印张 24 2015年7月第1版 □印次 ISBN 978-7-5487-1740-9 115.00元	

ń

\

Introduction

This book aims to present some recent advances in the exciting research field of inorganic functional materials with hollow interiors as well as the insight into the morphological and structural evolution among them. We have selected our related publications dedicated to the subject covering layered hydroxide and oxide nanocones, inorganic nanotubes, cobalt and nickel oxide nanorings, rare-earth oxide and oxysulfate hollow spheres, transition-metal oxide and chalcogenides hollow spheres, ferrite and metallic and polypyrrole hollow spheres. It surely will be a great relief and pleasure for us if this book provides a candid glimpse to the active and exciting research area of inorganic functional materials with hollow interiors. We sincerely hope that this book may be available for reference to established scientists and scholars.

About the Authors

Liu Xiaohe received his Ph. D from the Central South University in 2005, Changsha. He became an Associate Professor and then Full Professor at the School of Resources Processing and Bioengineering of Central South University in 2007 and 2012, and distinguished professor of the Shenghua Scholar Program of Central South University in 2011. He joined the School of Materials Science and Engineering of Central South University in 2014. His research interests focus on, layerstructured materials, novel unilamellar nanosheets, and hollow structure of nanomaterials, as well as darifying the close relationship between the microstructure of as-prepared products and their properties. He has already published more than 70 papers in SCI journals, such as Advance Materials, Angewandte Chemie International Editon, ACS Nano, Advanced Functional Materials, Journal of the American Chemical Society, etc. which have been cited more than 1600 times, and H-index has reached 26. He has received Hunan Province Natural Science Award (2010) and Outstanding Youth Fund in Hunan Province (2013).

Ma Renzhi received his B. S. and Ph. D both from Tsinghua University in 1995 and 2000, Beijing. He has been a principal researcher at the National Institute for Material Science (Japan). He joined the School of Materials Science and Engineering of Central South University in 2014. He has accomplished a series of international cutting-edge research work, especially the systematic research on the intercalation/exfoliation chemistry of inorganic layered compounds, single-layer nanosheets and hollow structure of nanomaterials. He has already published more than 130 papers and have been cited for more than 7000 times. The H-index of his citations is 45. He co-holds 22 authorized Japan patents. He was selected as an Innovative Talent offered by Recruitment Program of Global Experts (One-Thousand-Talents Plan) in China. He received 2009 Award for Distinguished Lectureship at Asian International Forum for Young Scientists of the Chemical Society of Japan, and "Chemical Physics Letter" 2003-2007 Most Cited Paper Award.

Li Xingguo received his Ph. D from Tohoku university in 1990, Japan. He is the Professor and Director of New Energy and Nano Materials Laboratory, Chairman of the Inorganic Chemistry Institute at Peking University. He is also a Guest Professor of Hiroshima University (Japan). He is an editor for the Chinese Journal of Inorganic Materials, the Chinese Journal of Inorganic Chemistry, the Chinese Journal of Process Engineering, Journal of Chinese Rare Earth Society, Journal of Rare Earth, Journal of Applied Chemistry and the Chinese Journal of Functional Materials. His research interests focus on hydrogen storage materials, hydrogen generation and purification, battery electrode materials and nano materials. He has already published more than 250 papers and contributed chapters to three books published by Nova Science Publishers, Inc. and American Scientific Publishers. He has received the National Distinguished Young Investigator Fund (2000), Lectureship Award of Japan Research Institute of Material Technology (2002) and GM Foundation Science & Technology Achievement Award (2005).

Academic Committee

National Publication Foundation

Series of Theoretical and Technological Frontiers of Nonferrous Metals

Academician of Chinese Academy of Sciences Director: Wang Dianzuo

Academician of Chinese Academy of Engineering

Members: (in alphabetical order)

Academician of Chinese Academy of Engineering Yu Runcang Academician of Chinese Academy of Engineering Gu Desheng Zuo Tieyong Academician of Chinese Academy of Engineering Liu Yexiang Academician of Chinese Academy of Engineering Liu Baochen Academician of Chinese Academy of Engineering Sun Chuanyao Academician of Chinese Academy of Engineering Li Dongying Academician of Chinese Academy of Engineering Qiu Dingfan Academician of Chinese Academy of Engineering He Jilin Academician of Chinese Academy of Engineering He Jishan Academician of Chinese Academy of Engineering Yu Yongfu Academician of Chinese Academy of Engineering Academician of Chinese Academy of Engineering Wang Xuguang Zhang Wenhai Academician of Chinese Academy of Engineering Zhang Guocheng Academician of Chinese Academy of Engineering Zhang Yi Academician of Chinese Academy of Engineering Chen Jing Academician of Chinese Academy of Engineering Academician of Chinese Academy of Sciences Jin Zhanpeng Zhou Kesong Academician of Chinese Academy of Engineering Zhou Lian Academician of Chinese Academy of Engineering Academician of Chinese Academy of Engineering Zhong Jue Academician of Chinese Academy of Engineering Huang Boyun Fuang Peiyun Academician of Chinese Academy of Engineering Tu Hailing Academician of Chinese Academy of Engineering Zeng Sumin Academician of Chinese Academy of Engineering Dai Yongnian Academician of Chinese Academy of Engineering

.

Editorial and Publication Committee

National Publication Foundation Series of Theoretical and Technological Frontiers of Nonferrous Metals

Director

Luo Tao

Professor of Engineering

General Manager of China Nonferrous Metal Mining (Group) Co., Ltd

Deputy Directors

Qiu Guanzhou Academician of Chinese Academy of Engineering

Tian Hongqi

Professor

Deputy president of Central South University

Yin Feizhou

Professor of Editorship

Deputy Director of Hunan Provincial Bureau of Press & Publication

Zhang Lin

Professor of Engineering

Chairman of Daye Nonferrous Metals Group Holdings Co., Ltd

Deputy Executive Director

Wang Haidong Professor

Wang Feiyue Professor

President of Central South University Press

Commissioners

Su Renjin

Wen Yuanchao

Li Changjia

Peng Chaoqun

Chen Canhua

Hu Yemin

Liu Hui

Tan Ping

Zhang Xi

Zhou Ying

Wang Yiye

Yi Jianguo

Li Hailiang

Preface

Nowadays, nonferrous metals have become the important material basis for the development of national economic, science and technology, national defense and so on, and are the key strategic resources for enhancing the comprehensive national strength and national security. As a nonferrous metals production superpower, the nonferrous metals research field in China has made great progress, particularly in the development and utilization of complex and low-grade nonferrous metals resources.

The nonferrous metals industry in China has developed rapidly in the recent 30 years. The production has been the maximal in the world year after year. The science and technology of nonferrous metals is playing an increasingly important role in the national economic construction and the modernization of national defense. At the same time, the contradiction between the shortage of nonferrous metals resources and the economic development is increasingly serious. The dependence on foreign resources has been increasing year by year, which seriously affects the healthy development of our national economy.

With the economic development, high-quality mineral resources have proven to be nearly depleted. This makes China face the crisis of critical shortage of the total supply of nonferrous metals. Furthermore, when the complex and low-grade mineral resources or secondery raw materials, which have the characteristics of difficult exploration, difficult mining, difficult processing and difficult metallurgy, gradually become the main resources, a huge challenge will be exerted on the traditional science and technology, such as geology, mining,

mineral processing. metallurgy, materials, processing, environment. The nonferrous metals industry and related industries are facing the competition for the survival of the crisis due to low-quality resources. The development of nonferrous metals industry urgently needs new theories and new technologies to adapt to the characteristics of the resources. The publication of nonferrous metals books that own complete system, leading level and mutual integration will improve the independent innovation ability of the nonferrous metals industry and promote the application of new theories and new technologies of highefficiency, low consumption, non-pollution and comprehensive utilization of the nonferrous metals resources. It will play a vital role in ensuring the sustainable development of the nonferrous metals industry in China.

As a major national publication project, the Series of Theoretical and Technological Frontiers of Nonferrous Metals plan to publish 100 kinds of books, which cover materials, metallurgy, mining, earth science, mechanical and electrical engineering and so on. The authors of these books include academicians who work in the field of nonferrous metals, chief scientists of major national research projects, Yangtze River Scholars, winners of China National Funds for Distinguished Young Scientists, winners of the National Excellent Doctoral Dissertation, talented persons selected by major national talent programs, leading experts in large-scale research institutes of nonferrous metals and key enterprises.

The National Publication Foundation established by the state is to encourage and support the publication of outstanding public service works that represent the highest level of the national academic publication. The Series of Theoretical and Technological Frontiers of Nonferrous Metals will aim at the frontiers of nonferrous metals and grasp the latest development of nonferrous metals at home and abroad. They will comprehensively, promptly and accurately reflect the new

theories, new technologies and new applications of nonferrous metals, and explore and capture the highly valuable research achievements, thus owning high academic values.

The Central South University Press has devoted long-term effort to publishing books of nonferrous metals. A lot of very effective work has been done in the course of publishing the Series of Theoretical and Technological Frontiers of Nonferrous Metals. This will vigorously promote the publication of outstanding scientific and technological works in the nonferrous metals industry, and play a direct and significant role in cultivating personnel of the nonferrous metals disciplines in the universities, research institutes and enterprises of China.

是这位

Wang Dianzuo Dec 2010

*					
		4			

Foreword

This book aims to present some recent advances in the exciting research field of nanotubes, especially the designed synthesis of various functional materials with hollow interiors as well as the insight into the morphological and structural evolution among them. It is generally believed that, for any inorganic functional material with a layered structure, nanotubes could be formed under appropriate conditions (chemical vapor deposition, hydrothermal synthesis, etc.). In fact, many kinds of inorganic nanotubes made of carbon, boron nitride (BN), transition-metal halides, oxides, and chalcogenides, all possessing natural or artificial layered structures, have successfully been produced based on a "rolling-up" mechanism, analogous to a paper scroll.

Compared with the layered counterparts, the formation of nanotubes from nonlayered materials requires much more effort to assemble atoms or small particles into a tubular structure during crystallization. As a result, the preparation of nanotubes from nonlayered materials is often subjected to the use of sacrificial templates such as nanotubes, nanowires, nanorods, and porous membranes. Although the sacrificial templating method has been proved to be a facile and efficient approach for the growth of tubular structures, sometimes the final product might be disrupted during the templates removing processes.

In addition to cylindrical nanotubes, layered materials might be able to form conical structures with hollow interiors by the same

rolling-up mechanism. Derived from the peculiar conical feature, nanocones exhibit special electronic, mechanical, and field-emission properties. However, apart from carbon and boron nitride systems, there are few reports focusing on conical structures originating from the rolling-up of layered materials. On the other hand, a large variety of layered materials could be exfoliated/delaminated into single-layer nanosheets by controlling layer-to-layer interaction through soft chemical procedures. Even nanotubes can be unwrapped/unravelled into individual sheets under a similar scenario. For example, carbon nanotubes could be unzipped/exfoliated to fabricate graphene sheets or ribbons. In general, layered oxide and hydroxide crystals adopt a lamellar or plate-like morphology. The question arises as to, besides carbon and boron nitride (BN), whether conical structures can be formed by the rolling-up of layered oxides and hydroxides, and if the nanocones can be further unwrapped/exfoliated into single-layer nanosheets. The pursuit of the answer to this intriguing question will be very important in revealing the formation mechanism of nanocones as well as the energy balance between nanocones and nanosheets.

Another interesting morphology for inorganic materials, hollow spheres with nanometer or micrometer dimensions, are attractive in various fields, such as controlled release capsules, artificial cells, selective catalysis, chemical storage and sensors, photonic crystals, biomedical diagnosis and therapy. Numerous chemical physicochemical strategies such as the kirkendall diffusion effect, spray pyrolysis, ostwald ripening, template-assisted synthesis and chemically induced self-transformation have been employed for the design and controlled fabrication of various micro/nanospheres with hollow interiors. Traditionally, template-assisted synthetic strategies including hard and soft templates have been demonstrated to be the most effective and versatile approach. In this regard, various templates, such as hard ones (e.g., silica, polymer, and carbon