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This book is dedicated to the memory of my father Nicholas
a good and gentle man.



PREFACE

This book was conceived in the winter of 1970 when I heard that I was
getting a Sloan Fellowship and I thought I would take a year off to write a
book. It took a bit longer than that, but I have many good excuses.

I am grateful to the Sloan Foundation, the National Science Founda-
tion and the University of California for their financial support—and to
the Mathematics Department at UCLA for the stimulating and pleasant
working environment that it provides.

One often sees in prefaces long lists of persons who have contributed to
the project in one way or another and I hope I will be forgiven for not
complying with tradition; in my case any reasonably complete list would
have to start with Lebesgue and increase the size of the book beyond the
publisher’s indulgence. I will, however, mention my student Chris Freiling
who read carefully through the entire final version of the manuscript and
corrected all my errors.

My wife Joan is the only person who really knows how much I owe to
her and she is too kind to tell. But I know too.

Finally, my deepest feelings of gratitude and appreciation are reserved
for the very few friends with whom I have spent so many hours during the
last ten years arguing about descriptive set theory; Bob Solovay and Tony
Martin in the beginning, Aleko Kechris, Ken Kunen and Leo Harrington
a little later. Their influence on my work will be obvious to anyone who
glances through this book and I consider them my teachers—although of
course, they are all so much younger than me. No doubt I would still
work in this field if they were all priests or generals—but I would not
enjoy it half as much.

Santa Monica, California December 22, 1978

Added in proof. I am deeply grateful to Dr. Haimanti Sarbadhikari who
read the first seven chapters in proof and corrected all the errors missed
by Chris Freiling. I am also indebted to Anna and Nicholas Moschovakis
for their substantial help in constructing the indexes and to Tony Martin
for the sustenance he offered me during the last stages of this work.
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ABOUT THIS BOOK

My aim in this monograph is to give a brief but coherent exposition of
the main results and methods of descriptive set theory. I have made no
attempt to be complete; in a subject so broad this would degenerate into
a long catalog of specialized results which would cover up the main
thread. On the contrary, I have tried very hard to be selective, so that the
central ideas stand out.

Much of the material is in the exercises. A very few of them are simple,
to test the reader’s comprehension and a few more give interesting
extensions of the theory or sidelines. The vast majority of the exercises
are an integral part of the monograph and would be normally billed
“theorems.” There are extensive “hints” for them, proofs really, with
some of the details omitted.

I have tried hard to attribute all the important results and ideas to
those who invented them but this was not an easy task and I have
undoubtedly made many errors. There is no suggestion that unattributed
results are mine or are published here for the first time. When 1 do not give
credit for something, the most likely explanation is that I could not
determine the correct credit. My own results are immodestly attributed to
me, including those which are first published here.

Many of the references are in the historical sections at the end of each
chapter. The paragraphs of these sections are numbered and the foot-
notes in the body of the text refer to these paragraphs—each time
meaning the section at the end of the chapter where the reference occurs.
In a first reading, it is best to skip looking up these references and read
the historical sections as they come after one is familiar with the material
in the chapter.

The order of exposition follows roughly the historical development of
the subject, simply because this seemed the best way to do it. It goes
without saying that the classical results are presented from a modern
point of view and using modern notation.
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xii ABOUT THIS BOOK

What appeals to me most about descriptive set theory is that to study it
you must really understand so many things: you need a little bit of
topology, analysis and logic, a good deal of recursive function theory and
a great deal of set theory, including constructibility, forcing, large cardi-
nals and determinacy. What makes the writing of a book on the subject so
difficult is that you must explain so many things: a little bit of topology,
analysis and logic, a good deal of recursive function theory, etc. Of
course, one could aim the book at those who already know all the
prerequisites, but chances are that these few potential readers already
know descriptive set theory. My aim has been to make this material
accessible to a mathematician whose particular field of specialization
could be anything, but who has an interest in set theory, or at least what
used to be called “‘the theory of pointsets.”” He certainly knows whatever
little topology and analysis are required, because he learned that as an
undergraduate, and he has read Halmos’ Naive Set Theory [1960] or a
similar text. Beyond that, what he needs to read this book is patience and
a basic interest in the central problem of descriptive set theory and
definability theory in general: to find and study the characteristic properties
of definable objects.
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INTRODUCTION

The roots of Descriptive Set Theory go back to the work of Borel, Baire
and Lebesgue around the turn of the centrury, when the young French
analysts were trying to come to grips with the abstract notion of a function
introduced by Dirichlet and Riemann. A function was to be an arbitrary
correspondence between objects, with no regard for any method or
procedure by which this correspondence could be established. They had
some doubts whether so general a concept should be accepted; in any
case, it was obvious that all the specific functions which were studied in
practice were determined by simple analytic expressions, explicit formulas,
infinite series and the like. The problem was to delineate the functions
which could be defined by such accepted methods and search for their
characteristic properties, presumably nice properties not shared by all
functions.

Baire was first to introduce in his Thesis [1899] what we now call Baire
functions (of several real variables), the smallest set which contains all
continuous functions and is closed under the taking of (pointwise) limits.
He gave an inductive definition: the continuous functions are of class 0
and for each countable ordinal &, a function is of class £ if it is the limit of
a sequence of functions of smaller classes and is not itself of lower class.
Baire, however, concentrated on a detailed study of the functions of class
1 and 2 and he said little about the general notion beyond the definition.

The first systematic study of definable functions was Lebesgue’s [1905],
Sur les fonctions représentables analytiquement. This beautiful and seminal
paper truly started the subject of descriptive set theory.

Lebesgue defined the collection of analytically representable functions
as the smallest set which contains all constants and projections
(X1, X3,..., X,) » x; and which is closed under sums, products and the
taking of limits. It is easy to verify that these are precisely the Baire
functions. Lebesgue then showed that there exist Baire functions of every
countable class and that there exist definable functions which are not

1



2 INTRODUCTION

analytically representable. He also defined the Borel measurable functions
and showed that they too coincide with the Baire functions. In fact he
proved a much stronger theorem along these lines which relates the
hierarchy of Baire functions with a natural hierarchy of the Borel measur-
able sets at each level.

Today we recognize Lebesgue [1905] as a classic work in the theory of
definability. It introduced and studied systematically several natural no-
tions of definable functions and sets and it established the first important
hierarchy theorems and structure results for collections of definable
objects. In it we can find the origins of many standard tools and
techniques that we use today, for example universal sets and applications
of the Cantor diagonal method to questions of definability.

One of Lebesgue’s results in [1905] identified the implicity analytically
definable functions with the Baire functions. To take a simple case,
suppose that f:®*— & is analytically representable and for each x,

f(x,y)=0

has exactly one solution in y. This equation then defines y implicitly as a
function of x; Lebesgue showed that it is an analytically representable
function of x, by an argument which was “‘simple, short but false.”” The
wrong step in the proof was hidden in a lemma taken as trivial, that a set
in the line which is the projection of a Borel measurable set in the plane
is itself Borel measurable.

Ten years later the error was spotted by Suslin, then a young student of
Lusin at the University of Moscow, who rushed to tell his professor in a
scene charmingly described in Sierpinski [1950].

Suslin called the projections of Borel sets analytic and showed that
indeed there are analytic sets which are not Borel measurable. Together
with Lusin they quickly established most of the basic properties of
analytic sets and they announced their results in two short notes in the
Comptes Rendus, Suslin [1917] and Lusin [1917].

The class of analytic sets is rich and complicated but the sets in it are
nice. They are measurable in the sense of Lebesgue, they have the
property of Baire and they satisfy the continuum hypothesis, i.e. every
uncountable analytic set is equinumerous with the set of all real numbers.
The best result in Suslin [1917] is a characterization of the Borel
measurable sets as precisely those analytic sets which have analytic
complements. Lusin [1917] announced another basic theorem which
implied that Lebesgue’s contention about implicitly analytically definable
functions is true, despite the error in the original proof.
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Suslin died in 1919 and the study of analytic sets was continued mostly
by Lusin and his students in Moscow and by Sierpinski in Warsaw.
Because of what Lusin delicately called ‘difficulties of international
communication” those years, they were isolated from each other and
from the wider mathematical community, and there were very few
publications in western journals in the early twenties.

The next significant step was the introduction of projective sets by Lusin
and Sierpinski in 1925: a set is projective if it can be constructed starting
with Borel measurable sets and iterating the operations of projection and
complementation. Using later terminology, let us call analytic sets A sets,
analytic complements CA sets, projections of CA sets PCA sets, comple-
ments of these CPCA sets, etc. Lusin in his [1925a], [1925b], [1925¢] and
Sierpinski [1925] showed that these classes of sets are all distinct and they
established their elementary properties. But it was clear from the very
beginning that the theory of projective sets was not easy. There was no
obvious way to extend to these more complicated sets the regularity
properties of Borel and analytic sets; for example, it was an open problem
whether analytic complements satisfy the continuum hypothesis or
whether PCA sets are Lebesgue measurable.

Another fundamental and difficult problem was posed in Lusin [1930a].
Suppose P is a subset of the plane; a subset P* of P uniformizes P if P* is
the graph of a function and it has the same projection on the line as P.

The natural question is whether definable sets admit definable unifor-
mizations and it comes up often, for example when we seek ‘“‘canonical”
solutions for y in terms of x in an equation

f(x,y)=0.

p*
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Lusin and Sierpinski showed that Borel sets can be uniformized by
analytic complements and Lusin also verified that analytic sets can be
projectively uniformized. In a fundamental advance in the subject, Kondo
[1938] completed earlier work of Novikov and proved that analytic
complements and PCA sets can be uniformized by sets in the same
classes. Again, there was no clear method for extending the known
techniques to solve the uniformization problem for the higher projective
classes.

As it turned out, the “difficulties of the theory of projective sets” which
bothered Lusin from his very first publications in the subject could not be
overcome by ingenuity alone. There was an insurmountable technical
obstruction to answering the central open questions in the field, since all
of them were independent of the axioms of classical set theory. It goes
without saying that the researchers in descriptive set theory were for-
mulating and trying to prove their assertions within axiomatic Zermelo—
Fraenkel set theory, as all mathematicians still do, consciously or not.

The first independence results were proved by Godel, in fact they were
by-products of his famous consistency proof of the continuum hypothesis.
He announced in his [1938] that in the model L of constructible sets
there is a PCA set which is not Lebesgue measurable: it follows that one
cannot establish in Zermelo—Frankel set theory (with the axiom of choice
and even the continuum hypothesis) that all PCA sets are Lebesgue
measurable. His results were followed up by some people, notably
Mostowski and Kuratowski, but that was another period of “‘difficulties of
international communication” and nothing was published until the late
forties. Addison [1959b] gave the first exposition in print of the consis-
tency and independence results that are obtained by analysing Godel’s L.

The independence of the continuum hypothesis was proved by Cohen
[1963], whose powerful method of forcing was soon after applied to
independence questions in descriptive set theory. One of the most sig-
nificant papers in forcing was Solovay [1970], where it is shown (among
other things) that one can consistently assume the axioms of Zermelo—
Frankel set theory (with choice and even the continuum hypothesis)
together with the proposition that all projective sets are Lebesgue
measurable; from this and Goddel’s work it follows that in classical set
theory we can neither prove nor disprove the Lebesgue measurability of
PCA sets.

Similar consistency and independence results were obtained about all
the central problems left open in the classical period of descriptive set
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theory, say up to 1940. It says something about the power of the
mathematicians working in the field those years, that in almost every
instance they obtained the best theorems that could be proved from the
axioms they were assuming.

So the logicians entered the picture in their usual style, as spoilers.
There was, however, another parallel development which brought them in
more substantially and in a friendlier role. Before going into that, let us
make a few remarks about the appropriate context for studying problems
of definability of functions and sets.

We have been recounting the development of descriptive set theory on
the real numbers, but it is obvious that the basic notions are topological in
nature and can be formulated in the context of more general topological
spaces. All the important results can be extended easily to complete,
separable, metric spaces. In fact, it was noticed early on that the theory
assumes a particularly simple form on Baire space

N ="w,

the set of all infinite sequences of natural numbers, topologized with the
product topology (taking w discrete). The key fact about N is that it is
homeomorphis with its own square N X N, so that irrelevant problems of
dimension do not come up. Results in the theory are often proved just for
N, with the (suitable) generalizations to other spaces and the reals in
particular left for the reader or simply stated without proof.

Let us now go back to a discussion of the impact of logic and logicians
on descriptive set theory.

The fundamental work of Gddel [1931] on incompleteness phenomena
in formal systems suggested that it would be profitable to delineate and
study those functions (of several variables) on the set @ of natural
numbers which are effectively computable. A great deal of work was done
on this problem in the thirties by Church, Kleene, Turing, Post and Godel
among others, from which emerged a coherent and beautiful theory of
computability or recursion. The class of recursive functions (of several
variables) on w was characterized as the smallest set which contains all
the constants, the successor and the projections (x;, X,,..., x,,) » X; and
which is closed under composition, a form of simple definition by induc-
tion (primitive recursion) and minimalization, where g is defined from f
by the equation

g(xy, X,..., X,,) = least w such that f(x, x,,..., x,, w) =0,



