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PREFACE

This book explains how high field superconductors can be used in the design
of rotating electrical machines and is intended to give graduate engineers an
introduction to the design, performance, and application of such machines. In
particular the book describes the implications the use of superconductors
have on the generic design of electrical machines and describes in detail the
electrical design process. In order to design superconducting machines a
knowledge of superconductors and their behaviour in magnetic fields at low
temperature is necessary and Chapter 2 is devoted to this topic. The remaining
chapters contain description and discussion of superconducting d.c. machines
(Chapter 3) and the superconducting turbogenerator (Chapters 4—7), as these
represent the major development areas, with the main emphasis being placed
on superconducting turbogenerator design and performance.

I should like to express my thanks to all my former colleagues at
International Research and Development Company Ltd., Newcastle upon
Tyne, England, in particular Dr A. D. Appleton, MrJ. S. H. Ross,and MrA. J.
Mitcham who helped me in obtaining material for this book and made my
years of employment at IRD interesting and enjoyable. Without them this
book would not have been written. I would also like to thank my wife for
reading the manuscript and Professor Hammond for giving me the opportun-
ity to write this book. Thank you.

J.R.B.

Durham
May 1982



Nomenclature

Y signifies peak value, y = ¥ sin ot

A area, m?

AA vector potential

A electric loading, kA m ™!

B flux density, T

B magnetic loading in superconducting turbogenerator, T
B., lower critical magnetic field, T

B., upper critical magnetic field, T

B, magnetic loading in d.c. machine, T

C 2k, T,,/m, peak number of conductors
C, specific heat, kj kg !

d 8/4/2, classical penetration depth

D,d diameter, m

E, e electromotive force (e.m.f.), V

E, E electric field, Vm !

E energy, J

f frequency, Hz

f t/3yV?, friction factor

F force, N m 2

g gap or air gap, m

G shear modulus, Pa

G normalized wave admittance

h, convection heat transfer coefficient, Wm 2 K !
h, radiation heat transfer coefficient, Wm 2 K !
H magnetic field strength, A m ™!

H inertia constant, s

i, I current, A

I inertia, kg —m?

j complex operator

J current density, A m 2

& polar second moment of area, m*

k thermal conductivity, Wm ™! K !
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NOMENCLATURE

1 + (r,/r,)**?, environmental screen radial magnetic field enchance-
ment factor

1 F (r/r)*?, environmental screen tangential magnetic field en-
hancement factor

nth space harmonic breadth factor

nth space harmonic winding factor

helical winding skew factor
linear current density, A m !
damping coefficient
length, m

inductance, H

number of phases
mutual inductance, H
rotational speed, rev s 7!
harmonic number
rotational speed, rev m !

number conductors in series

number of outer rotor layers

pressure, Pa

number of pole pairs

wetted perimeter area in liquid-metal slip ring, m?
power, W

rate of heat transfer, W m 2

slip-ring electric loading, A m ™!

heat transfer, kJ kg ™!
reactive power, V A
rate of heat transfer, W
radius, m

resistance, Q

Reynold’s number
Laplace operator
number of stages in d.c. homopolar machine
screening ratio
thickness, m

time, s
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v, V
v, V

m & O =
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s

Ho
He
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NOMENCLATURE XV

critical fault clearing time, s
temperature

torque, N m

number of turns in series
critical temperature, K
voltage,
velocity, ms !

work input, kJ kg !

state variable

reactance, QQ

direct-axis synchronous reactance, Q

direct-axis transient reactance (flux linkage of field winding con-
stant), Q

direct-axis subtransient reactance (flux linkage of radiation screen
constant), Q

direct-axis sub-subtransient reactance (flux linkage of outer rotor
constant), Q

synchronous reactance, Q

quadrature axis synchronous reactance, Q

mass density, kgm 3
(2p/wpou,)''? classical skin depth
rotor angle, deg
emissivity

damping ratio

efficiency

eddy viscosity, kgm s !
angle, rad

coupling factor
proportionality constant
coeflicient of friction
dynamic viscosity, kgm 's !

permeability of free space, 47 x 10”7 Hm !
relative permeability

resistivity, Q m

conductivity, S



NOMENCLATURE

winding spread, rad

1
T shear stress, Pa

¢ flux, Wb

¢ external power factor angle

v flux linkage

W internal power factor angle

1) angular frequency, rad s !

Wy damped natural frequency, rad s '
Subscripts

a armature value in phase reference frame
A armature value transformed into d, q reference frame
av average

b infinite busbar

c critical value

c radiation screen

d direct axis

D rotor screen direct axis

D, outer screen

D, inner screen

e eddy current

f field winding

F full load

g air gap

h hysteresis

i winding radius of interest

m mechanical radians

min minimum

max maximum

n harmonic number

NEL number of electrical equations

p number of pole pairs

ph phase

quadrature axis



NOMENCLATURE

rotor screen quadrature axis
radial

stator (armature) winding
synchronous

short circuit

generator transformer

total

includes power system components
environmental screen

axial

tangential

initial value

no load value

xvil
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1. An introduction to superconducting
electrical machines

1.1. Introduction

In 1911, while observing the behaviour of the metal mercury at the University
of Leiden, H. K. Onnes measured its resistivity at low temperatures. He found
that it was immeasurably small. However, he observed that, rather than
following the normal characteristic shown in Fig. 1.1, the resistivity fell sharply
at 4 K and below this exhibited, to all practical purposes, zero resistivity
(Fig. 1.2). This new phenomenon was termed superconductivity.

\

Increasing purity
p“

Electrical resistivity (Q m)

Temperature (K) —=

Fig. 1.1. Variation of the resistivity of metals with temperature.
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conducting | Normal

|
|
|
|
|
|
|
|

Electrical resistivity (Q m) ———=

T (transition temperature)

S

Temperature (K) ———e=

Fig. 1.2. Variation of the resistivity of a superconductor with temperature.



2 AN INTRODUCTION TO SUPERCONDUCTING ELECTRICAL MACHINES

Although superconductivity was discovered in 1911 it was not until the
1960s with the development of high-field superconductors (see Chapter 2) that
their application in electrical power engineering became feasible. Such an
application of superconductivity was attractive because, with the elimination
of electrical resistance, the possibility of manufacturing electric machines that
were both smaller and more efficient than present-day conventional designs
became a practical reality.

However, as at present superconductivity is only exhibited by certain
materials at low temperatures, typically below 12 K, refrigeration of the
superconductor is required to cool it below its transition temperature. This
tends to limit the application of superconductors to large or special-purpose
electric machines and power transmission.

A considerable amount of effort has been spent worldwide in researching
into the use of superconductors in power transmission cables, transformers,
d.c. machines, a.c. machines, and magnetic levitation and for limiting fault
currents in power systems. Superconducting cables formed the subject matter
of an earlier monograph in this series (Rechowicz 1975); this monograph is
concerned with superconducting electrical machines and, in particular, with
superconducting rotating electrical machines.

1.2. Power developed in an electric machine

For any cylindrical electrical machine the power developed by the armature
can be expressed as

P o AB,D*LN (1.1)

where A, is the armature electric loading in kiloamperes per metre, B, is the
magnetic loading in teslas, L is the machine active length in metres, D is the
armature diameter in metres, and N is the rotor speed in revolutions per
minute. Although the above expression is applicable to all cylindrical
machines, the limitations on the different components varies depending on the
particular type of machine. Nevertheless it does serve to illustrate some of the
potential benefits of using superconductors.

When the conductor is in the superconducting state the absence of
resistance means that large excitation current densities at least 100 times
greater than those allowed in copper conductors, can be used. Consequently
large excitation magnetomotive forces (m.m.f:s) can be used which produce
magnetic fields far in excess of 2 T without recourse to magnetic iron. This
allows an increase in the power output per unit volume through an increase in
the useful flux, a reduction in the machine weight through the elimination of
magnetic iron, and an increase in efficiency through the removal of Joule loss
in the excitation winding.



