

Climate Change

Biological and Human Aspects
IONATHAN COWIE

Climate Change

Biological and Human Aspects Second Edition

JONATHAN COWIE

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107603561

© Jonathan Cowie 2007, 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007 Second Edition 2013 Reprinted 2013

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Climate change: biological and human aspects / Jonathan Cowie. - 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-107-60356-1 (paperback)

1. Climatic changes – History. 2. Paleoclimatology. 3. Climatic changes – Environmental aspects. 4. Human beings – Effect of environment on.

5. Physical anthropology. 6. Mass extinctions. I. Title.

OC903.C69 2013

551.6-dc23 2012013138

ISBN 978-1-107-60356-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Climate Change

Biological and Human Aspects Second Edition

The second edition of this acclaimed text has been fully updated and substantially expanded to include the considerable developments (since publication of the first edition) in our understanding of the science of climate change, its impacts on biological and human systems, and developments in climate policy. As well as being completely revised throughout, major updates include:

Considerable expansion of the sections on climate impacts on early societies in history, and biological impacts;

Updated data and graphs on energy production and consumption;

Completely new chapter sections on: climate thresholds; the Kyoto II conference; Canadian, Australian and New Zealand energy and climate policy;

A new appendix on 'Further thoughts for consideration' to encourage discussion by students and others.

Written in an accessible style, this book provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology, human ecology and Earth system science. It has been written to speak across disciplines. It will again prove to be invaluable to a wide range of readers, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, geoscience and environmental science students who need to understand the biological and human ecological implications of climate change. It is also a valuable reference text for those involved in environmental monitoring, conservation and policy-making seeking to appreciate the science underpinning climate change and its implications.

The United Nations Environment Programme (UNEP) cited the first edition as one of the top climate change science books of the 21st century.

Jonathan Cowie has spent many years conveying the views of learned societies in the biological sciences to policy-makers, and in science communication (promotion, publishing, and press liaison). His earlier postgraduate studies related to energy and the environment. He is a former Head of Science Policy and Books at the Institute of Biology (UK). He is also author of *Climate and Human Change: Disaster or Opportunity?* (1998).

Praise for this edition:

"A comprehensive review of the science of climate change, the impacts of climate change on biological and human systems, and their interrelatedness. An excellent contribution to the growing recognition that knowledge of biological and human systems is needed to understand climate change."

Gordon Bonan, National Center for Atmospheric Research

"... readers gain an appreciation of the wide-ranging consequences of climate change with many examples and analogies... it is a book a climate scientist, or any concerned citizen of the world, should read."

Paul A. Dirmeyer, George Mason University

Praise for the First Edition:

"... a fine treatment of global climate change and interactions with biological systems... everyone is likely to gain a fresh perspective or learn something new."

EOS

"... reader-friendly, quantitative, authoritative, but above all, stimulating; the pages dare you not to turn them over and read further."

The Biologist

"... measured, informative, balanced, scientifically sound, and as up-to-date as a book can possibly be in these days of rapid information accretion."

Bulletin of the British Ecological Society

"There is so much to gain from Cowie's book... I know of no other source... that brings together the breadth and depth of material that this book does.... the bottom line is that anyone who wants to understand climate change and its impacts... should buy this book.... Cowie does a brilliant job of weaving together the evolution of life with the evolution of Earth's climate."

Bioscience

"... an impressive endeavor... the strength of this contribution is precisely the interdisciplinary approach taken to such a multifaceted challenge."

Global Environmental Politics

In memory of Harry Harrison Making room

(12th March 1925–15th August 2012)

Acknowledgements for the first edition

I would very much like to thank all those in UK bioscience with whom I have interacted in some way or other on climate-change matters. In particular, I should thank a good number who have been on the various Institute of Biology science committees since the 1990s. This also goes to a score or two of my fellow members of the British Ecological Society and the Geological Society of London. A special thank you goes to those who have alerted (and, as often as not, invited) me to workshops and symposia on climate and energy issues as well as on biosphere science. I have found every one useful in at least one way: many provided a number of new insights and all gave me a reality check. Thank you.

This book also owes a lot to some research bodies. In the UK we are quite bad at making data from tax-payer-funded research publicly available (even for education and policy purposes). This is not so in the USA and so I greatly valued the open access that the National Oceanic and Atmospheric Administration give to their palaeoclimate-related data (which I have used to generate a number of the figures). Interested readers can visit their website at www.ncdc.noaa.gov/oa/ncdc.html. I am also extremely appreciative of the UK Environment Agency's current (2006) Chief Executive, without whom Figure 6.5 [Figure 6.9 in the second edition] simply would not have been presented! Then there are the many who sent paper off-prints (e-mailed pdf files). There are too many to mention but be assured all are referenced.

Talking of references, as mentioned in the Introduction, as far as possible I have taken either major reports, many of which are available on the internet, or used high-impact-factor journals that can be found in most university libraries (these in turn cite papers in more specialist publications). However, I have also used a number of World Health Organization (WHO) press releases. This comes from my background in science policy, and the WHO have been sending me these for the best part of two decades. You will not find these in university libraries but fortunately you too can seek these out, at www.who.int/mediacentre/news/en.

A mention also has to go to the friendly and helpful librarians of Imperial College London, whose work really is appreciated. Then there are all those who have facilitated my site and field visits in the UK and abroad, be they to power stations (fossil, hydroelectric and nuclear), sites of special scientific interest (in the literal and not just the UK technical sense of the term) and educational institutions.

A thank you also goes to Peter Tyers for the [first edition's] cover picture. This is the second time he has done this for me, but then he is a good photographer.

Finally I must specifically thank Cambridge University Press and freelance copy editor Nik Prowse for work on the manuscript. I like to think that I have long since

found my feet with words, but any capability for editorial spit and polish has always eluded me. Nik has also greatly helped standardise the referencing and presentation. I therefore really do value good editors (and so should you) and especially those who appreciate those who try to do things a little differently. With luck you will notice.

Acknowledgements for the second edition

In addition to those who kindly helped with the first (2007) edition – as this book firmly builds on that work – I must thank those who helped me develop this updated and expanded second edition. For permission to use figures and data I am appreciative to the following organisations: the Intergovernmental Panel on Climate Change (IPCC), the Earth Science Research at the Laboratory of the National Oceanic and Atmospheric Administration, and the Met Office UK. For permission to reproduce figures (and a photograph), as well as providing advice on data presentation, I am indebted to Timothy Andrews, Gerd Folberth, Jonathan Patz, Pieter Tans and Jim Zachos. A tip of the hat goes to Ian Spellerberg for facilitating some of the contacts for my Australasian sojourn. Here I am most grateful to David Karoly, Rodney Keenan, Ashok Parbhu, Simon Watts and Jez Weston for being generous in affording time and their briefing on climate change impacts and policy in Australia and New Zealand. I have to confess that in this regard I feel somewhat guilty. I had hoped to give more space to climate change and policy matters in these countries. Alas the sheer volume of new science arising in the past 6 years, and the constraints in fitting this into the allocated word count, meant that I could not include nearly as much as I would have liked. Nonetheless I found their briefings most useful, not to mention fascinating, and I hope that my condensing matters down does not do them a disservice.

At this point I must make the obligatory statement that any errors with the science in this book are my own and not those of the above good folk.

I must also thank the Geological Society and British Ecological Society. Of the 'climate surprises' discussed in this book's first edition, the notion that we might at some stage cross a critical transition and climate threshold somewhat analogous to the initial Eocene carbon isotope excursion (CIE) has gained some traction: it was even identified in the IPCC's 2007 Assessment's Working Group I report (pages 442–3 of that work), although it concluded that there was still 'too much uncertainty'. What was needed was a way to bring the current knowledge on this topic together, and so I proposed to the Geological Society the idea of an international symposium on this topic. This suggestion also gained support from the British Ecological Society. In November 2010 a 2-day symposium on past carbon-induced abrupt climate change and how it might inform us regarding future change was held (the first-ever joint event between the British learned societies for geologists and ecologists). There was also an end-of-symposium evening discussion that attracted governmental policy advisors. The outcomes of this symposium have contributed to the discussion in this second edition. Here appreciation goes to my symposium co-convener Anthony Cohen who was invaluable in identifying some of the speakers and in attracting some further sponsorship, as well as Georgina Worrall of the Geological Society who was

the event's organising secretary. Once again, any error in my attempts to convey the science are my own, and not the learned bodies involved or the symposium's speakers.

Finally, as with the first edition, once again I must specifically thank Cambridge University Press staff and freelance copy editor Nik Prowse (www.nikprowse.com) for work on the manuscript. They do what I cannot, and for that I am truly indebted.

Contents

Figures	page xiii
Acknowledgements for the first edition	xix
Acknowledgements for the second edition	xxi
Introduction	1
1. An introduction to climate change	4
1.1 Weather or climate	5
1.2 The greenhouse effect	5
1.3 The carbon cycle	14
1.4 Natural changes in the carbon cycle	23
1.5 Pacemaker of the glacial-interglacial cycles	24
1.6 Non-greenhouse influences on climate	31
1.7 The water cycle, climate change and biology	33
1.8 From theory to reality	35
1.9 References	37
2. Principal indicators of past climates	40
2.1 Terrestrial biotic climatic proxies	42
2.1.1 Tree-ring analysis (dendrochronology)	42
2.1.2 Isotopic dendrochronology	45
2.1.3 Leaf shape (morphology)	47
2.1.4 Leaf physiology	48
2.1.5 Pollen and spore analysis	49
2.1.6 Species as climate proxies	52
2.2 Marine biotic climatic proxies	54
2.2.1 ¹⁸ O Isotope analysis of forams and corals	54
2.2.2 Alkenone analysis	58
2.3 Non-biotic indicators	59
2.3.1 Isotopic analysis of water	59
2.3.2 Boreholes	61
2.3.3 Carbon dioxide and methane records as palaeoclimatic for	reing
agents	61
2.3.4 Dust as an indicator of dry-wet hemispheric climates	62
2.4 Other indicators	62
2.5 Interpreting indicators	63
2.6 Conclusions	63
2.7 References	64

viii Contents

3.	Past	climate	change	66
	3.1 Early biology and climate of the Hadean and Archeaen eons			
		(4.6–2.5 bya)		
		3.1.1	The pre-biotic Earth (4.6–3.8 bya)	66
		3.1.2	The early biotic Earth (3.8–2.3 bya)	67
	3.2	Major	bio-climatic events of the Proterozoic eon (2.5-0.542 bya)	71
		3.2.1	Earth in the anaerobic–aerobic transition (2.6–1.7 bya)	71
		3.2.2	The aerobic Earth (from 1.7 bya)	74
	3.3	Major	bio-climatic events of the pre-Quaternary Phanerozoic	
		(542-2)	2 mya)	80
		3.3.1	Late-Ordovician extinction (455–435 mya)	80
		3.3.2	Late-Devonian extinction (365–363.5 mya)	81
		3.3.3	Vascular plants and the atmospheric depletion of carbon	
			dioxide (350–275 mya)	81
		3.3.4	Permo-Carboniferous glaciation (330-250 mya)	84
		3.3.5	End-Permian extinction (251 mya)	85
		3.3.6	End-Triassic extinction (205 mya)	87
		3.3.7	Toarcian extinction (183 mya)	88
		3.3.8	Cretaceous–Tertiary extinction (65.5 mya)	89
		3.3.9	The Eocene (55–34 mya) and the Initial Eocene Thermal	
			Maximum (~55 mya)	92
		3.3.10	Eocene-Oligocene extinction (approximately 35 mya; or	
			33.9 mya?)	106
		3.3.11	Late-Miocene expansion of C ₄ grasses (14–9 mya)	107
	3.4	Summ	ary	112
	3.5	Refere	ences	113
4.	The	Oligoce	ne to the Quaternary: climate and biology	119
	4.1	The O	ligocene (33.9–23.03 mya)	119
	4.2	The er	nd Miocene (9–5.3 mya)	121
	4.3	The Pl	iocene (5.3–2.6 mya)	122
	4.4	The cu	irrent ice age	126
	4.5		st glacial	132
		4.5.1	Overview of temperature, carbon dioxide and timing	132
		4.5.2	Ice and sea level	135
		4.5.3	Temperature changes within the glacial	135
		4.5.4	Biological and environmental impacts of the last glacial	147
	4.6	Intergl	acials and the present climate	156
		4.6.1	Previous interglacials	156
		4.6.2	The Allerød, Bølling and Younger Dryas (14 600–11 600	
			years ago)	160
		4.6.3	The Holocene (11 700 years ago-the Industrial Revolution)	166
		4.6.4	Biological response to the last glacial, LGM and Holocene	4.50
			transition	178
		Summ		189
	1 0	Dafara	neas	191

ix Contents

5.	Pre	sent climate and biological change	198
		Recent climate change	198
		5.1.1 The latter half of the Little Ice Age	198
		5.1.2 20th-century climate	202
		5.1.3 21st-century climate	203
		5.1.4 The Holocene interglacial beyond the 21st century	203
		5.1.5 Holocene summary	207
	5.2	Human change arising from the Holocene climate	208
		5.2.1 Climatic impacts on early human civilisations	208
		5.2.2 The Little Ice Age's human impact	216
		5.2.3 Increasing 20th-century human climatic insulation	224
	5.3	Climate and business as usual in the 21st century	225
		5.3.1 The IPCC Business-as-Usual scenario	225
		5.3.2 Uncertainties and the IPCC's conclusions	240
	5.4	Current human influences on the carbon cycle	249
		5.4.1 Carbon dioxide	250
		5.4.2 Methane	253
		5.4.3 Halocarbons	256
		5.4.4 Nitrous oxide	256
	5.5	References	257
6.	Curr	rent warming and likely future impacts	262
		Current biological symptoms of warming	262
		6.1.1 Current boreal dendrochronological response	262
		6.1.2 Current tropical rainforest response	264
		6.1.3 Some biological dimensions of the climatic change fingerprint	266
		6.1.4 Phenology	273
		6.1.5 Biological communities and species shift	278
	6.2	Case study: climate and natural systems in the USA and Canada	297
	6.3	Case study: climate and natural systems in the UK	312
	6.4	Case study: climate and natural systems in Australasia	324
	6.5	Biological responses to greenhouse trends beyond the 21st century	328
	6.6	Possible surprise responses to greenhouse trends in the 21st century	
		and beyond	329
		6.6.1 Extreme weather events	330
		6.6.2 Greenhouse gases	333
		6.6.3 Sea-level rise	334
		6.6.4 Methane hydrates (methane clathrates)	342
		6.6.5 Volcanoes	346
		6.6.6 Oceanic and atmospheric circulation	349
		6.6.7 Ocean acidity	353
		6.6.8 Climate thresholds	355
		6.6.9 The probability of surprises	358
	6.7	References	359

x Contents

7.	The	human e	cology of climate change	367
	7.1	Populat	tion (past, present and future) and its environmental impact	367
		7.1.1	Population and environmental impact	367
		7.1.2	Past and present population	375
		7.1.3	Future population	378
			Food	380
		7.1.5	Impact on other species	382
	7.2	Energy	supply	385
		7.2.1	Energy supply: the historical context	385
		7.2.2	Future energy supply	391
	7.3	Human	health and climate change	395
		7.3.1	Health and weather extremes	398
		7.3.2	Climate change and disease	404
			Flooding and health	412
		7.3.4	Droughts	421
	7.4	Climate	e change and food security	422
		7.4.1	Past food security	422
		7.4.2	Present and future food security and climate change	425
	7.5	The bio	ology of reducing anthropogenic climate change	432
		7.5.1	Terrestrial photosynthesis and soil carbon	433
			Manipulating marine photosynthesis	438
		7.5.3	Biofuels	439
	7.6	Summa	ary and conclusions	442
	7.7	Referen	nces	443
8.	Sust	ainabilit	ty and policy	449
			velopments of sustainability policy	450
		8.1.1	UN Conference on the Human Environment (1972)	450
		8.1.2	The Club of Rome's Limits to Growth (1972)	452
			World Climate Conference (1979)	453
		8.1.4	The World Conservation Strategy (1980)	453
		8.1.5	The Brandt Report: Common Crisis North-South (1980)	454
			The Brundtland, World Commission on Environment and	
			Development Report (1987)	455
		8.1.7	United Nations' Conference on the Environment and	
			Development: Rio de Janeiro (1992)	456
		8.1.8	The Kyoto Protocol (1997)	457
		8.1.9	Johannesburg Summit: UNCED+10 (2002)	459
		8.1.10	2002–2007	460
		8.1.11	The run-up to Kyoto II (2008–2011)	461
	8.2	Global	energy sustainability and carbon	463
		8.2.1	Prospects for savings from changes in land use	465
		8.2.2	Prospects for savings from improvements in energy efficiency	466
		8.2.3	Prospects for fossil carbon savings from renewable energy	470
		824	Prospects for carbon-capture technology	472

xi Contents

8.2.5 Prospects for nuclear options	476
8.2.6 Overall prospects for fossil carbon savings to 2025	480
8.3 Energy policy and carbon	481
8.3.1 Case study: USA	482
8.3.2 Case study: Canada	486
8.3.3 Case study: UK	489
8.3.4 Case study: China and India	498
8.3.5 Case study: Australia and New Zealand	504
8.4 Possible future energy options	508
8.4.1 Managing fossil carbon emissions: the scale of the proble	m 508
8.4.2 Fossil futures	510
8.4.3 Nuclear futures	511
8.4.4 Renewable futures	512
8.4.5 Low-energy futures	513
8.4.6 Possible future energy options and greenhouse gases	514
8.5 Future human and biological change	515
8.5.1 The ease and difficulty of adapting to future impacts	518
8.5.2 Future climate change and human health	524
8.5.3 Future climate and human-ecology implications for wildli	
8.5.4 Reducing future anthropogenic greenhouse gas emissions	
8.5.5 A final conclusion	528
8.6 References	528
Appendix 1 Glossary and abbreviations	535
Glossary	535
Abbreviations	539
Appendix 2 Biogeological chronology	543
Appendix 3 Calculations of energy demand/supply and orders of magnitude	546
Calculations of energy demand/supply	546
Orders of magnitude	547
Sources	547
Appendix 4 Further considerations: climate science and policy beyond 2013	548
Index	551