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Preface

Stereoselectivity is one of the most important aspects for natural product chemists.
Following the increasing possibility of detection and assignment of stereogenic
centers, a tremendous increase in stereoselective methods of organic reactions,
particularly aldol reactions, has been noticed. In the beginning of this development,
only sporadic examples of stereoselective aldol reactions were described, mostly in
the context of total syntheses of natural products. An outstanding early example
is the R. B. Woodward’s proline-catalyzed aldol addition in the total synthesis of
erythronolide A at the Harvard University in 1981. In the following three decades,
a vast arsenal of stereoselective aldol additions has been developed (see Figure).
This book provides a compre- T —

X1

hensive review of modern aldol 4°
reactions, especially in the aspect *%°
of how to achieve high stereos-

g s . o s 300
electivity — diastereoselectivity as 2o
well as enantioselectivity. Stereos- .,

election is discussed under several 150
different aspects. One aspect is the
deployment of different substrates —
acetate or propionate aldol reactions.
Another aspect is the mode of action
including metal enolate chemistry,
Lewis acid as well as Lewis base
catalysis, enzymatic catalysis, and
organocatalysis. There are some
overlappings of these aspects in the
chapters covering the cross-cutting
themes of vinyloguos Mukaiyama reaction or asymmetric inductions (e.g., com-
pare Scheme 1.50 with Scheme 2.59) or total synthesis of dolastatin 19 — (compare
Scheme 1.82 with Scheme 5.8). These overlappings, however, are intentional in
order to give a comprehensive insight into the techniques for installing required
configurations during aldol reactions. The utility of the corresponding methods
is shown in the context of total syntheses of natural products. All chapters are
thoroughly well written by experts in the respective fields.
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1
Stereoselective Acetate Aldol Reactions

Pedro Romea and Felix Urpi

1.1
Introduction

The stereochemical control of aldol reactions from unsubstituted enol- or enolate-
like species, what are known as acetate aldol reactions, has been a matter of concern
for nearly 30 years [1, 2]. Indeed, pioneering studies soon recognized that the
asymmetric installation of a single stereocenter in such aldol reactions was much
more demanding than the simultaneous construction of two new stereocenters in
the related propionate counterparts (Scheme 1.1) [3]. This challenge, together with
the ubiquitous presence of chiral B-hydroxy a-unsubstituted oxygenated structures
in natural products, has motivated the development of new concepts and strategies
and a large number of highly stereoselective methodologies. These involve
Lewis-acid-mediated additions of enolsilane derivatives of carbonyl compounds
to aldehydes (Mukaiyama aldol variant) [4, 5], a plethora of transformations that
take advantage of the reactivity of boron, titanium(IV), and tin(II) enolates (metal
enolates) [6], and some insightful organocatalytic approaches [7]. In spite of these
accomplishments, the quest for more powerful and selective methodologies
and a better understanding of their intricate mechanisms is an active area of
research. Herein, we describe the most significant achievements in the field of
stereoselective acetate aldol reactions based on the Lewis-acid-mediated addition
of enolsilanes and metal enolates to aldehydes, with particular attention to their
application to the asymmetric synthesis of natural products. Recent advances in
parallel organocatalytic procedures are not discussed.

O OH o] o]
J\Kk RCHO J\/ R2 RCHO Jk(k
1 < 1 - R
R R R%: Me R R% H R R
Me H
Propionate aldol reaction Acetate aldol reaction
Two new stereocenters A single new stereocenter
Four stereoisomers Two sterecisomers

Scheme 1.1 Aldol reactions.

Modern Methods in Stereoselective Aldol Reactions, First Edition. Edited by Mahrwald, R.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(3)

2

1 Stereoselective Acetate Aldol Reactions

1.2
Mukaiyama Aldol Reaction

1.2.1
Concept and Mechanism

With some significant exceptions, enolsilanes are unreactive toward aldehydes."
This lack of reactivity can be overcome by increasing the electrophilic character
of aldehydes or the nucleophilicity of enolsilanes. The former option is achieved
by coordination of Lewis acids (ML,) to the carbonyl group, which enhances
the electrophilicity of the C=0 bond and facilitates the attack of enolsilanes.
This represents the canonical Mukaiyama aldol variant ((1) in Scheme 1.2) [4,
5]. It also covers vinylogous aldol transformations, which involve the reactions
of y-unsubstituted B, y-conjugated enolsilanes ((2) in Scheme 1.2) [8]. In turn,
the latter option takes advantage of the activation of the nucleophilic character of
enolsilanes by binding of Lewis bases such as phosphoramides (O=P(NR3)3) to the
silicon atom ((3) in Scheme 1.2) [9].

Early mechanistic analyses suggested that Lewis-acid-mediated aldol reactions
represented in Scheme 1.2 proceeded through open transition states [4, 5, 10]. This
model assumes a transoid geometry for the Lewis-acid-aldehyde complex, which the
enolsilane attacks following antiperiplanar or synclinal approaches, as represented
in Scheme 1.3. Antiperiplanar transition states I and II are usually more favorable
because of the minimization of dipolar interactions, the steric interactions between
the enolsilane (R! or R3SiO groups) and the aldehyde (R? group) being the main
source of instability. Similar steric interactions arise in synclinal transition states
III and IV, whereas V and VI are characterized by a destabilizing interaction
between the enolsilane and the Lewis acid coordinated to the carbonyl oxygen.
Then, steric and stereoelectronic interactions determine the relative stability of

_SiRg

(0] 0] OH O
RZJLH + /\HI — RZJ\)I\FN
ML _SiR
2 g © e OH 5 O
Jl\H + /\/\Fv > R2 \ R1
Y o
Rj
Si

0"~ 0=P(NR,); OH O

o
Rz’U\H * /\Fﬂ

Scheme 1.2 Mukaiyama aldol variants.

Y

1) As silyl enolates derived from amides and trihalosilyl enolates.



