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Preface

Discrete Mathematics is a branch of mathematics dealing with finite or
countable processes and elements. Graph Theory is an area in Discrete
Mathematics which studies configurations involving a set of vertices inter-
connected by edges (called graphs). From humble beginnings and almost
recreational type problems, Graph Theory has found its calling in the mod-
ern world of complex systems and especially of the computer. Graph Theory
and its applications can be found not only in other branches of mathemat-
ics, but also in scientific disciplines such as engineering, computer science,
operational research, management sciences and the life sciences. Since com-
puters require discrete formulation of problems, Graph Theory has become
an essential and powerful tool for engineers and applied scientists, in partic-
ular, in the area of designing and analyzing algorithms for various problems
which range from designing the itineraries for a shipping company to se-
quencing the human genome in the life sciences.

This book is an expansion of our first book Introduction to Graph The-
ory: H3 Mathematics. While the first book was intended for capable high
school students and university freshmen, this version covers substantially
more ground and is intended as a reference and textbook for undergrad-
uate studies in Graph Theory. In fact, the topics cover a few modules in
the Graph Theory taught at the National University of Singapore. The
material in the book, and especially the variety and quantity of the prob-
lems, are derived very much from the enormous wealth of knowledge and
experience gained from the thirty plus years of teaching and researching of
the first author, Koh Khee Meng.

Certain features of this book are worth mentioning. Care is specially
taken so that concepts are explained clearly and developed properly; it
strives to be readable and at the same time be mathematically rigorous.
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At suitable junctures, questions are inserted for discussion. This is to ensure
that the reader understands the preceding section fully before proceeding
on to new ideas and concepts. Each chapter includes applications of the
concepts in real-life. They are added for general interest and as substanti-
ation of the usefulness of Graph Theory concepts. There are many items
in the Exercise component following most sections. Some are exercises in-
tended for reinforcing what is learnt earlier while others test the full range
of understanding and problem solving in the concepts acquired. Each chap-
ter concludes with a large selection of interesting problems that cover all
the sections in that chapter. Some of these problems are from research ar-
ticles and these add to the depth and cutting-edge aspect of the endeavor.
Proofs of most important theorems are given in their full mathematical
rigour. Finally, we believe that “good research enlivens teaching, and good
teaching encourages research” and so we have made a conscious effort to
include recent research work at the frontiers of areas of graph theory into
this book.

Chapter 1 covers the fundamental concepts and basic results in Graph
Theory tracing its history from Euler’s solution of the problem of the
Bridges of Konigsberg. Fundamental concepts include those of graphs,
multigraphs, vertex degrees, paths, cycles, distance, eccentricity of vertices,
and the radius and diameter of a graph.

In Chapter 2, congruence is defined in terms of isomorphism rather
than a vague notion of shape and this allows a ‘handle’ to compare graphs.
Chapter 2 further fleshes out the concept of a graph by introducing the
attendant concepts of subgraphs and the complement of a graph, and coding
of a graph via graphic sequences.

In Chapter 3, we introduce two important families of graphs, namely
trees and bipartite graphs. A tree, in some sense, forms the ‘skeleton’ of
a connected graph and in general, a forest of trees forms the ‘skeleton’ of
any graph. Thus, the structure and properties of trees are very important.
Bipartite graphs are another family of graphs that have found applications
in many real-life situations such as matching a group of job seekers with a
set of potential jobs under certain conditions.

Chapter 4 returns the reader to Euler’s seminal work on the Bridges of
Konigsberg. Euler is memorialized for his contribution by having graphs
with the property that one can have a walk that traverses all edges exactly
once and then returns to the starting vertex named after him — Eulerian
multigraphs. This chapter gives a fuller treatment of Eulerian multigraphs.
This study includes the Chinese Postman Problem which is an optimization
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problem on multigraphs with weighted edges.

William Rowan Hamilton was a famous mathematical prodigy. He intro-
duced the vertex analogous concept of the Eulerian circuit. Such a graph
that admits a cycle that visits all the vertices in the graph was named
Hamiltonian in his honor. In Chapter 5, we study Hamiltonian graphs and
the Traveling Salesman Problem which is another important optimization
problem on graphs with weighted edges.

Be it transportation systems, computer networks, or supply chains, the
notion of the robustness of a system, in the sense of the connectedness of its
components, is certainly of great importance. Since graphs are used often to
model systems, in Chapter 6, we shall introduce an important parameter,
called connectivity, which measures how ‘strong’ the connectedness of a
given graph is. Two versions of the notion, namely, the vertex version and
the edge version, will be presented.

Three important features of sets of vertices and sets of edges are dis-
cussed in Chapter 7. The first arises from the ‘natural’ relation of inde-
pendence among vertices, giving rise to the notion of an independent set,
intuitively seen as a set of vertices with no edges between them. Another
‘natural’ relation of independence among edges gives rise to the notion of a
matching, intuitively seen as a set of edges with no common vertex between
any pair of them. Thirdly, the analogous notions of a vertex cover and an
edge cover are intuitively seen as a set of vertices which ‘touch’ every edge
in the graph and a set of edges which ‘touch’ every vertex in the graph. In-
dependence, matching and covering are graph features that are useful when
modeling some real-life scenarios. For example, a complete matching can
be used to find a system of distinct representatives (SDR). And in the next
chapter, independence is a necessary condition for vertex-coloring, which
in turn can be used in scheduling activities.

Can all maps be colored with at most four colors? Many people believed
that the answer is affirmative, but no one could prove it for a long time.
This is known as the Four Color Problem. In Chapter 8, we study vertex-
colorings of graphs as an approach to tackle this problem. The chromatic
number is introduced and an algorithm and some techniques to estimate
or enumerate it are discussed. Interesting applications of vertex-coloring to
scheduling problems are given in some detail.

A set of vertices in a graph is called a dominating set if any vertex not
in the set is adjacent to a vertex in the set. This idea of dominating sets
in graphs can be used to solve real world problems. For example, suppose
transmitting stations are to be built in some cities in a country so that every
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city without a transmitting station can receive messages from some adjacent
city with one. The problem for selecting the cities for the transmitting
stations is that of finding a dominating set in the corresponding graph.
Chapter 9 studies this very useful concept and its variants, including the
very recent conception of Roman Domination.

Finally, Chapter 10 studies graphs with ‘directions’ indicated on the
edges. Such are called directed graphs or digraphs. Such digraphs suitably
model many situations where relationships between items are directional.
The chapter covers some basic concepts and provides some detail for a
special family of digraphs, called tournaments. Material in this chapter
also reaches as far as the frontier area of optimal orientations of graphs.

Problems in a section are referenced as

Problem [Chapter].[Section].[Number];

for example, Problem 1.3.4 means Problem 4 at the end of Section 1.3.
General problems related to all the concepts in a chapter are placed in a
special section at the end of the chapter and are referenced as Problem
[Chapter|.[Number|; for example, Problem IV.3 means Problem 3 at the
end of Chapter 4. While a list of notations is provided at the beginning of
the book, a list of indices can be found at the end. References are cited in
the book according to the format, for example, Dirac (1960) refers to the
article authored by Dirac published in 1960.

We would like to thank Goh Chee Ying, Hang Kim Hoo, Ku Cheng
Yeaw, Zeinab Maleki, Ng Boon Leong, Soh Kian Wee, Tay Tiong Seng,
Chia Gek Ling, Tan Ban Pin, Ting Tao Siang and Anders Yeo for reading
through the draft and checking through the problems — any mistakes that
remain are ours alone.

Koh Khee Meng
Dong Fengming
Ng Kah Loon
Tay Eng Guan
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