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PREFACE

The last decade or so has witnessed tremendous progress in methodology in
the field of drug development in general and pharmacokinetics in particular. Clinical
pharmacokinetics is using new tools for probing into the “black box” once being ac-
cessible only partly through experimental techniques and mostly through mathemati-
cal and computer means. Development of computerized scanning, positron emission
tomography (PET), stereoselectivity and other techniques are now enabling investi-
gators to have better pictures of the systems they are studying. Mathematical models
through computer simulation and statistical estimation, mostly due to easy access be-
cause of inexpensive yet powerful personal computers, are enabling us to investigate
ultrastructures and their functional connectivity in more detail. As a consequence,
new hypotheses are being formed and tested in various related fields.

In clinical pharmacokinetics, mostly due to mathematical modeling, more
accurate interspecies scaling of pharmacokinetic parameters and dosimetry can be
done now-a-days. The concept of “a human is a bigger rat” does not necessarily fly
as a consequence. Pharmacokinetic concepts are becoming powerful tools in
meaningful carcinogenic and toxic risk extrapolation of different chemicals in
humans. New dose delivery designs are being formulated using pharmacokinetic
techniques for different pharmaceutical compounds. Investigations continue in the
academia, research institutions, pharmaceutical, biotechnological, and agricultural
industries in developmental and physiological aspects of different chemicals for the
benefit of mankind.

The idea of a school on “New Trends in Pharmacokinetics”, from which the
present publication was made possible, took shape over almost a year. The organiz-
ing committee, consisting of Drs. Aldo Rescigno, Ajit K. Thakur, James T.Stevens,
and Giuliano Mariani, spent many hours and days worth of efforts to gather experts
in various fields of clinical, experimental, and computational pharmacokinetics. The
idea was to have these experts from various research environments to teach in this
intensive workshop in September, 1990 in Erice,Sicily. The historical background
and natural serenity of this island paradise provided the exact atmosphere needed for
such an international exchange of ideas under the auspices of the Ettore Majorana
Centre.

Of course, none of this could have happened if no money were available for
the workshop. Students, investigators, and the speakers had to be supported with
funds. The organizing committee relentlessly pursued many different organizations
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for funds. The ultimate success was due to the generous contributions with funds
from the North Atlantic Treaty Organization, the Farmindustria (Rome, Italy),
C.N.R. (Rome, Italy), Sigma Tau (Pomezia, Italy), the Italian Section of the Bragg
Creek Institute (Parma, Italy), the National Science Foundation (Washington,
U.S.A.), Ciba-Geigy Corporation (Basel, Switzerland), and Dr. Ronald Sawchuk of
the School of Pharmacy, University of Minnesota (U.S.A.). Thanks to the above,
the organizing committee did not have to sell their houses to pay for all expenses,
after all!

The lectures and the materials were excellent. Many of the participants took
active roles in discussing their research topics with their peers from different
countries. Such an international gathering is always enriching from cultural
standpoint as well. That was clearly evidenced in the course of the workshop.
Several students, post-doctoral fellows, and senior investigators from various
countries also presented some of their works in leisurely fashion. The present book
is the result of culmination of extensive works by many individuals who, at times,
must have wished that they had never seen the faces of the Editors or heard their
voices on the telephone! Let the glory be all theirs.

Aldo Rescigno and Ajit K. Thakur
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PHARMACOKINETICS: UNFOLDING OF A CONCEPT

Aldo Rescigno and Bianca Maria Bocchialini

School of Pharmacy
University of Parma
Parma, Italy

INTRODUCTION

The word “Pharmacokinetics”, coined from the Greek words ¢appoxov,
drug, and x1vnTix0G, moving, was used for the first time in 1953 by F. H. Dost, a
German pediatrician, in his book “Der Blutspiegel” [Dost, 1953], but the concept
had been around for a long time before that. The object of Pharmacokinetics is the
study of absorption, distribution, and elimination of drugs; but, since the existence
of Pharmacology, it has been known that drugs are absorbed, distributed, and elimi-
nated from the organism, and that the rates of absorption, distribution, and elimina-
tion are fundamental in determining the effects on the organism they are administered
to. Pharmacokinetics as such can be therefore considered a new discipline only since
more sophisticated methods have been introduced to study the kinetic properties of
drugs. These quantitative methods have been offered by Analytical Chemistry, by

Physical Chemistry, and by Applied Mathematics.
In the following few pages we shall try to show how the different concepts

used in Pharmacokinetics have unfolded in recent years.

THE INVARIANT QUANTITIES

The volume of distribution

It is not easy to decide which is the earliest paper dealing with the quantitative
solution of a pharmacokinetic problem. An important pioneering study is due to
Widmark [1919], who in 1919 published in Sweden a paper about the elimination of
ethanol and acetone from blood. Widmark observed that, in its final phase, ethanol is
‘eliminated according to an exponential law. He introduced the concept of what we
now call the volume of distribution.

If a drug is introduced intravenous, let’s call D the dose administered and c(t)
the concentration in the plasma measured at time t. If we ignore the short interval of
time necessary for the drug to distribute uniformly in the plasma, then

lim c(t) = D/V,
t—0
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i.e. the ratio D/V represents the concentration of the drug in the plasma before a frac-
tion of it has been eliminated or has been distributed to other organs. The quantity V
must be the volume of the plasma, and can be calculated from the formula above.
This observation may seem obvious, but when we measure in an experiment the
values of c(t) and D, and compute V using the formula above, sometimes we get
values much different from the expected plasma volume. There may be several rea-
sons for this discrepancy; for instance, the drug may be bound to some tissues be-
fore being distributed in the plasma. Nowadays we call the ratio

V =D/ lim c(t)
t—0

the apparent volume of distribution. This is one of the fundamental concepts in
Pharmacokinetics, but, as any fundamental concept, it took a while before becoming
part of our basic concepts.

Naturally if the biological condition of the subject does not change, with a dif-
ferent dose D the concentration c(t) will change in the same proportion; therefore, the
ratio computed with the formula above will not change. The quantity V therefore is
called invariant. Within the limits of validity of the hypotheses incorporated in the
equations used for its computation, an invariant quantity does not depend on the par-
ticular experimental conditions.

The time of maximum concentration

Another invariant quantity is tmax, i.€. the interval of time necessary for a drug
to reach its maximum concentration in the blood, when it has been injected as a bo-
lus. This concept was introduced in 1933 by Gehlen [1933]. He showed that the
tmax Of a drug, other conditions being equal, does not change with the dose. This
observation too, apparently obvious today, is a fundamental concept of Pharmaco-
kinetics. It is important to remember, though, that all invariance properties depend on
some very specific hypotheses. In the case of tpmax in particular, the required
hypothesis is the linearity of the biological system. Indeed the invariance of tmax is
commonly used to check the linearity of the system under observation.

The eigenvalues

The second contribution, in chronological order, to the formation of fundamen-
tal pharmacokinetic concepts, is due to Biehler [1925], who in 1925 described the
elimination of ethanol from blood with a bi-exponential function. But the first sys-
tematic treatment of pharmacokinetic problems with exponential functions is due to
Teorell [1937a, b], generally considered the originator of Pharmacokinetics. In 1937
Teorell published the paper “Kinetics of Distribution of Substances Administered to
the Body;” in that paper Teorell, starting from some general hypotheses, built the
equations of what we would call today a “compartmental model”. The solutions of
Teorell’s equations were sums of exponential functions, exactly as used today in
most pharmacokinetic models. The exponents of those exponential functions are the
eigenvalues of the matrix formed with the coefficients of the differential equations
[Rescigno, Lambrecht and Duncan, 1983] describing the biological system ob-
served, and do not depend upon the experimental initial conditions. The eigenvalues
therefore are invariant quantities, independent not only of the dose, but also of the
mode of administration. In other words the eigenvalues do not change if the drug is
administered in a single dose or in multiple doses or by continuous infusion.

The following year, 1938, another fundamental paper appeared [Artom,
Sarzana and Segré, 1938]. It was written by a physiologist, a histologist, and a



physicist who combined their expertises to do a very innovative piece of work.
Using the isotope 32P prepared by Ernest Lawrence at the University of California in
Berkeley, they studied the synthesis and distribution of phospholipids in rats after
administration of inorganic Phosphorus. Theirs is probably the first paper dealing
with the use of radioactive isotopes for the solution of pharmacokinetic problems. It
is worth noting that, even though they did not use the term “compartment” explicitly,
they were the first authors to use this concept in a precise and consistent way.

The half-life of a drug

Finding the eigenvalues from the experimental data is not always an easy prob-
lem. Most of the times the observation errors propagate in such a way as to invalidate
most of the numerical procedures towards this goal. In general, the easiest eigen-
value that can be computed is the smallest one in absolute value.

Suppose that a particular drug in a particular organism is characterized by three
eigenvalues; in other words, the function representing the concentration of that drug
in the plasma is a sum of three exponential functions; then

c(t) = Ajeut + Aje—02t + Aje—0at, (1)
where — o1, — 02, — 3 are the three eigenvalues. Suppose also that

o] > 0 > 03.

When t increases, the first two exponential functions decrease faster than the
third, so that after a sufficiently long time

c(t) = Aze—o3t,
and asa consequence,
ln(c(t)) =E—-03-t+ ln(A3), (2)

The plot of In c(t) versust is a straight line of slope — a3, therefore a3 can
easily be determined by plotting c(t) as a function of t on a semilogarithmic scale and

extra&)‘olat'ing for t — oo
he interval of time necessary for c(t) to decrease 50%, in the range of t where

the approximation of equation (2) is valid, is called tj2 or half-life of that drug.
Clearly

tip= In 2/(13 = (0.693- 1/(13.

We mentioned earlier that this particular eigenvalue is easy to determine, but this is
not always the case. There are at least two cases when this determination is difficult
and inaccurate. If A3 is very small, the approximation in equation (2) is still valid,
but only for values of c(t) correspondingly small, that is for measurements of c(t)
taken for large values of t, when experimental errors are more likely. This difficulty
sometimes can be overcome. In fact, a3 is invariant, but A3 is not; if the initial
conditions are modified appropriately, for instance, by using a continuous infusion,
A3 may sufficiently increase while o3 stays constant.



Table 1

k=2 k=3 x=4
=2 14~41 2~9 0~2
=3 5~20 0~2 0~0
=4 2~9 0~0 0~0
=5 1~4 0~0 0~0
=6 0~2 0~0 0~0

Table 1 shows the relative errors in % committed when assuming

Aze otz Ajet + Age 04 + Age ot ;

the entries of the table are k = ap/a3 and T = au3t; the range of values indicated for
the error corresponds to the different possible values of o; the larger the difference

o] — 02, the smaller the error.
Table 2 shows the corresponding errors when the drug is given with a continu-

ous infusion until steady state is reached, then c(t) is measured and extrapolated as
above. The reduction of the errors in considerable.

Another case when the determination of a3 is difficult is when o = 3; in this
case equation (1) must be substituted by

c(t) = A-e~ut + (B-t + C)e-%t;
if a1 > ap, fort sufficiently large, the approximations

c(t) = (Bt + C)e—0at;

In(c(t) = — ap- t+In(B-t + C)
are valid, but this last one is not the equation of a straight line.
Of course the probability of two eigenvalues being exactly equal is extremely
small. Suppose that
o) >0 0y—-03=¢>0,

vlvél%tls € is small; the coefficients of equation (1) are given by [Rescigno and Beck,

Table 2
=2 k=3 k=4
1= 7~24 1~3 0~2
1= 2~11 0~1 0~0
=4 1~5 0~0 0~0
T= 0~2 0~0 0~0
T= 0~1 0~0 0~0




c(0) il c(0) c(0)

Al:(al—az)(al—as)' 27 z—) (@ —a3)’ ° (a—ar) (03 -02)’
therefore
= () (0t — 03) et — (01y — 0t3) €%t + (01 — 0p) e—0at)
c(t) T e a3)‘(a2 o3) e (o —o3)e (o —o
o(®) = o) (e-e~out — (o — ot3) -8t + (o — 01z) €0,

(0 — a)(0g — 03)
For t very large we may use the approximation

_ O ot
e(o; — 3)

clt) =

but the error of this approximation does not decrease very rapidly with t; in the best
case, i.e. when o] >> 02, the relative error is given by e—tL. Table 3 shows some
typical values for this error.

Table 3

[34 z 3 B ]
e 13.5% 5.0% 1.8% 0.7%

The area under the curve

The area under the curve measuring the concentration of a drug in the plasma as
a function of time, often abbreviated AUC, depends in a simple way upon the frac-
tion of the drug reaching the systemic circulation and upon its clearance therefrom.

If c(t) is the concentration of a drug in the plasma and Cl the volume eliminated
per unit time, then Cl-c(t)-dt is the amount of drug eliminated during the interval of
time from t to t+dt. Suppose that the drug present in the plasma will be eliminated
completely in due time, then

(=]

F-D = ({ Cl-c(t)-dt, 3)

where D is the dose or amount of drug administered, and F is the fraction reaching
the systemic circulation.
If Cl is constant, then equation (3) can be written in the form

oo

F-D = CI- [ c(t)-dt. C))
0



This equation is known as the “Stewart-Hamilton principle,” often written in the
form

AUC/D =F/Cl

where

oo

AUC= [ c(t)dt.
0

Evidently the ratio AUC/D is another invariant quantity, provided our hypothe-
sis is valid, i.e. Cl is constant.

The transfer time

Another important invariant quantity is the transfer time of a drug from a com-
partment to another compartment, as introduced in 1961 by Rescigno and Segre
[1961a]. If ca(t) and cp(t) are the concentrations of a drug in compartments a and b
respectively, and a is the precursor of b, the transfer time from a to b is the difference

L t-cp (H)dt ‘[) t-c, (t)dt
Tap = - .
J. Cp(t)dt J. Ca(t)dt
0 0

This quantity does not depend upon the dose or the mode of administration of

the drug.
We shall say more about the transfer time in the sections about compartments

and moments.

®)

The transfer function

Consider a system where X(t) is the amount of drug present at time t in the
compartment where it was first supplied, while Y(t) is the amount present at time t in
another compartment. We call the first compartment the precursor of the second, and
the second the successor of the first [Rescigno and Segre, 1961b]. If all the pro-
cesses involved in the transfer of the drug from precursor to successor are linear and
do not change in time, the relationship between X(t) and Y(t) can be described by the

integral equation
t

YO = [ X(v) gt-v) dr. (6)
0

The integral above is called a convolution, and the function g(t) is called the
transfer function [Rescigno, 1960] between X(t) and Y(t). The transfer function is
not, strictly speaking, an invariant quantity, but it is a characteristic of the system and
many invariant quantities can be derived from it.

The actual process of determining function g(t) is not a simple one because
small experimental errors in X(t) and Y(t) propagate non-linearly in the numerical



computation of g(t) and may become very large. Nevertheless, there are a number of
properties of the transfer function that are important and can be easily observed.
Consider the ratio

t
[ X() g(t-1) dr
Y@ _ o
t-X(t) t-X(t)

)

which can easily be computed for a number of values of t; for t = 0 this ratio is inde-
terminate, but using L’Hospital’s rule one gets

t
_[) X (g (t-1)dt + X(©g(0)

PTINN.L J
-0 1.X(t) 10 X() + tX'(1)

Now, if X(0) # 0, then

lim _YLQ_ = g(O)
t—0 t'X(t)

If X(0) = 0, we can use L’Hospital’s rule once more to get

t |
J X (t0dt + XOF'0) + X'0g0)

lim (U] =1lim 2
-0 ¢.X(t) 0 2X’(t) + t-X”(t)
Now, if X’(0) # 0, then

lim YO _20)

-0 .X(1) 2

Proceeding in the same way we find that, if
X(0) = X’(0) = X"(0) =-.. =X (0) = 0,
but
X®(0) 0,
then

i YO _ 80
-0¢.x(t) (@-D!



