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Preface

In the last decade mathematical crystallography has
found increasing interest. Siginificant results have been
obtained by algebraic, geometric, and group theoretic
methods. Also classical crystallography in three—-dimen-—
sional Euclidean space has been extended to higher dimen-
sions in order to understand better the dimension
independent <crystallographic properties. The aim of this
note is to introduce the reader to the fascinating and
rich world of geometric crystallography. The prerequisites
for reading it are elementary geometry and topological
notations, and basic knowledge of group theory and linear
algebra.

Crystallography is geometric by its nature. In many
cases, geometric arguments are the most appropriate and
can thus best be understood. Thus the geometric point of
view is emphasized here. The approach is axiomatic start-
ing from discrete point sets in Euclidean space. Symmetry
comes in very soon and plays a central role. Each chapter
starts with the necessary definitions and then the subject
is treated in two- and three-dimensional space. Subsequent
sections give an extension to higher dimensions. Short
historical remarks added at the end of the chapters will
show the development of the theory. The chapters are main-
ly self-contained. Frequent cross references, as well as
an extended subject index, will help the reader who is
only interested in a particular subject.

The author is grateful to many persons who have contrib-
uted to this note: First of all to my teacher Werner
Nowacki who introduced me into crystallography. To Hans
Wondratschek for his teaching me crystallographic orbits
and four—-dimensional space groups. To Wilhelm Plesken for
his exposition on higher dimensional lattices at the
Bielefeld symposium in summer 1985. To Hans Debrunner for
his tutorial on Dehn's function.

I'm especially indebted to Marjorie Senechal for her
help and encouragement and to Hans—-Rudolf Gn&dgi for his
critical comments. Needless to say that I take fil 1l
responsability for any errors and misprints and would be
grateful for any notification.
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I'm also grateful to the D. Reidel Publishing Company
for their offer to publish this note and to Michiel C. ten
Raa and Ian Priestnall of D. Reidel Publishing Company for
their collaboration. The typescript was performed at the
computer center of the University of Berne (BEDAG).

Peter Engel
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1. Basic Definitions

The regular shape of crystals suggests that within a
crystal atomic building units, congruent to each other,
are regularly arranged. Assuming the crystal to be infi-
nite and the atoms to be points, an infinite discrete
point set, called a discontinuum, results which plays an
essential role in crystallography. Moreover, such point
sets are of great importance in several branches of math-
ematics and physics. Whereas the existence of a continuum
in nature cannot be shown, the discontinuum has an assured
position in natural sciences. In this chapter some general
properties of discrete point sets will be discussed.

1.1, Axioms of geometric crystallography

We consider a point set X in n-dimensional Euclidean
space Er which fulfils, following Hilbert (Hilb2), three
conditions:

1.1. The point set X is discrete, that is, around each
point of the set an open ball of fixed radius r>0 can
be drawn which contains no other point of X.

1.2. Every interstitial ball, that is, every open ball
which can be embedded into E® such that it avoids all
points of X, has a radius less than or equal to a
fixed finite R.

1.3. The point set X looks the same if seen from every
point of X.

The second condition ensures that the points are spread
uniformly over the whole space. For example they may not
lie all on one side of a hyperplane. This signifies that
the number of points within any ball of radius L > R
increases with the n-th power of L.

A point set X which fulfils the first two conditions is
called F discontinuum or, following Delaunay (Delo4), a
(r,R)-system. This more general kind of point set is
important in the theory of amorphous mater and of quasi-
crystals.

Following Sohncke (Sohn2), the third condition can be
made more precise if we consider the set of straight line
segments drauwn from any point of the set X to all the

1
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Figure 1.1. A fragment of a regular point system having
plane group p4%.

remaining points of X. The third condition requires that
the line systems of any two points of X are directly or
mirror congruent. That is ,for each pair of points we can
find a rigid motion of the space which brings the two line
systems and hence the whole point set X into self-coinci—
dence.

The third condition ensures that a largest interstitial
ball of radius R exists. In a (r,R)-system the radius R
is the supreme of radii of all interstitial balls and a

ball of radius R not necessarily exists.

A point set X which fulfils all three conditions is
called a regular point system by Sohncke (Sohn?2) or a
homogeneous discontinuum by Niggli (Nigg1).

Regular point systems have applications in the theory of
ideal crystals. Any ideal crystal structure can be
described as a union of one ore several regular point
systems. Each regular point system corresponds to one
atomic species.
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142, Euclidean vector space

We will assume that the reader is familiar with standard
linear theory of EN and elementary topological notations.
We also assume familarity with convex sets. The main
purpose of this section is to give a brief survey of an
Euclidean vector space. The following definitions are
standard.

In order to describe the properties of a point set X in
n-dimensional Euclidean space Enr, where n is finite, we

have to introduce the concept of a real vector space. As
origin we choose a point 0O€E™; it need not belong to the
point set b Then we consider the translation which

carries 0 to some other point x. This translation can be
identified with the vector X from the origin 0 to the
point X . Selecting n linearly independent vectors
345...,3, as basis vectors, every vector X is uniquely
represented by its components ¢4,...,¢, referred to this
basis,

-)z = g’!34+--'+“:n3n’

The components ¢4,...,%¢, can also be considered as the
coordinates of the point x.

The dimension n is defined as the maximal number of
linearly independent basis vectors.

We represent a vector by a column:

Defining the sum of two vectors to be

£q € tat Cn

x4
+

<}
1]
-+
1

. tal  |¢n En¥

and multiplication by a real scalar A by
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£4 At q
AX = A |. ' = ’
tn]  |nEn
a vector space V™ over the field of real numbers is

defined.
The vector space VM is called Euclidean if we define the
scalar product of two vectors, referred to the coordinate

system Fqas:sassdny To be

Cq14¢¢eCqpn ¢

and the length of a vector to be
IX] := + VXtCcX

The metric tensor C=(c;3;) is a symmetric matrix with coef-
ficients

- -
cis= 1331 |3;5lcosa;j;,

where ajj is the angle between the basis vectors 3; and
3.

If the basis vectors 3; have unit length and are mutu-

ally perpendicular, then C is the identity matrix and it
follows that

Xe¥ 1= EqCqa*talotinccins +inlne
such a basis is called a cartesian coordinate system.

In crystallography the periodicity of an ideal crystal
is used to define a crystal coordinate system which, in
general, is not a cartesian one.

Frequently the reciprocal or dual basis Pq,...,F, is
used. For a vector §:=£131+...+£n3n and a vector

Vi=C4Tqa+...4+C,TH Wwe require that

Xey = £q€ate. o+t Cn.
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Thus the reciprocal basis T©4,...,F, is obtained by the
invers of C, U:=C~1.

- -
rq Uqgq4ee0elUqpn a“q
= ’
, -
rn UnqeeeeUnn adn

1«3 Rigid motions

A motion in E™ can be represented by a non-singular nxn
matrix S and a shift vector 3; it transforms the coordi-

nates of of a point XEED into those of another point
xPEEM§
¢ S44.++:.51n|[%1 T4
= + .
£ Saqgs we wSaRE tw én

We assume that the point x is moved referred to a fixed
coordinate system. Using the Frobenius symbol (Frob1)
this equation can be abreviated as

x' 1= (S,3) x.

The matrix S is called the rotation part and the shift
vector 3 is called the translation part of the motion
(S,2). Every motion that brings x into coincidence with x'
has also to bring an arbitrary point y€E™ into coincidence
with some point y'€EN.

For a rigid motion we require that the length of the
vector xy = ¥y-X is conserved:
[y-%]2= (§-X)tC (¥-X) = |y'=-X']2
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This equation has to remain valid for all XsVEEM there-
fore, C = StCS. As a necessary and sufficient condition we
have

n n
Cij = Z EChk S5hi Skj-
h=1 k=1

For a cartesian coordinate system the metric tensor C is
the identity matrix and therefore, the following orthogo-
nality relations hold,

" 0 if i & 3
z 5ki5kj =
k=1 1 if i = 3

A rigid motion is also called an isometry.

Since det(C) equals det(S*CS)=det(C)det2(S) the result
det(S) =+1 follows. The two values -1 and 1 for det(S)
are connected to the chirality character of the isometry.
In oder to understand the chirality character of an isome-
try (5,3) we take a subset MCE™ of at least n+1 points
which not all lie in a hyperplane. In the two-dimensional
case we take three points which determine a triangle R in
the plane as shown in Figure 1.2. In general n+1 points
determine a simplex in EP. It is always possible to deter-
mine a simplex which exhibits chirality, that is, the
mirror image of the simplex is not directly congruent to
the original simplex. The simplex and its mirror
congruent copy are said to be enantiomorph to each other.
In Figure 1.2 the triangles R"™ and R™ are enantiomorh.

If det(S)=+1 then the isometry (S,3) carries the simplex
into a direct congruent copy. Such an isometry is called a
proper isometry. Particularly S is called a proper rota-
tion. If "I" designates the identity operation then CIsS3
is a translation.

Otherwise if det(S)=—1 +then (S,2) carrias the simplex
into a mirror congruent copy, that isy the éhirality of
the simplex changes. Such an isometry is called an improp-
er isometry. Particularly S is called an improper rotation
or a rotoreflection or, if it leaves a (n-1)-dimensional
hyperplane fixed, a reflection.

Example 1.1: A triangle R in the plane E2 is shown in
Figure 1.2. The rotation part S rotates the triangle R
into R'" through the rotation angle ¢ around the rota-
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wm

Figure 1.2. Rigid motions in the plane

tion point p. The translation part 8 carries R' into
R". Both motions are proper isomteries. The triangle R"
is enatiomorph to the triangle R™ hence, there exists
no proper isometry in the plane which maps R"™ aonto R™.
However, this can be achieved by a reflection in the
mirror line m.

4, G o Symmetry operations

Let M be any subset of EP. We look at the isometries
which map M onto itself.

Definition 1.1: A symmetry operation acting on a set M is
an isometry which maps M onto itself.

The symmetry operations of a set M have two important
properties:
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N

Figure 1.3. Symmetry operations of a set MCEN

1. A symmetry operation (S4,84) followed by a second
symmetry operation (S5,8,) is again a symmetry opera-
tion (S3,33) of M.

x"= (Sz;gz)x' = (52,32)(51,31)x

]

SquX+Sz§1+32

(S3,83)x%,
with

S3:= S,54 and 83:= Szg1+ gz.
2. The symmetry operation (S3,83):=(S4,84)"°1 which
reverses another symmetry operation is again a symmetry

operation of M and the result is the identity operation
(I,0).

(53;33) (Sq;gq) = (5351;5334+ 33) = (I,0).
It follows that

S3= STq and §3= —ST1§1

Hence, the totality of symmetry operations of a set M
generates a group in the mathematical sense.
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Symmetry groups correspond to linear representations of

abstract groups in Euclidean vector spaces. Thus we
consider (S,8) as a representation in E", We note that
different symmetry groups may correspond to different
representations of the same abstract group (cf. section
6:.6)s

Definition 1.2: Every group P of symmetry operations

acting on a set M and which leaves at least one
point z€E"™ fixed is called a point group.

Example 1:2% Let A be the equilateral triangle shown in
Figure 1.3. There exist six symmetry operations which
map A onto itself. These are three rotations S4, S,
and S3; having rotation angles 04, 05, and o3 respec-
tively and three reflections in the mirror lines mgq,
m2, and m3. The center of gravity of the triangle A
remains fixed under all these symmetry operations.

We NowW look at the symmetry operations of a regular
point system X. By the regularity condition 103 there
exists for every pair x,y€X a symmetry operation (S,3)
which carries x into y and thereby maps X onto itself. It
follows that all x€X are connected through symmetry oper-—
ations acting on X. If this is fulfilled we say that the
group of symmetry operations acts transitively on X.

Definition 1.3 Every group G of symmetry operations

acting transitively on a regular point system in
EP is a n—-dimensional space group.

Synonymous with space group also crystallographic group
is used.

Definition 1.4: The set of all symmetry operations of a
group I' which map a set M onto itself is called
the stabilizer of M in T.

Synonymous with stabilizer also site symmetry group or
isotropy group are used.



