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Preface

This book offers a combined course of lectures on game theory which the author has delivered
for several years in Russian and foreign universities.

In addition to classical branches of game theory, our analysis covers modern branches left
without consideration in most textbooks on the subject (negotiation models, potential games,
parlor games, best choice games, and network games). The fundamentals of mathematical
analysis, algebra, and probability theory are the necessary prerequisites for reading.

The book can be useful for students specializing in applied mathematics and informatics,
as well as economical cybernetics. Moreover, it attracts the mutual interest of mathematicians
operating in the field of game theory and experts in the fields of economics, management
science, and operations research.

Each chapter concludes with a series of exercises intended for better understanding. Some
exercises represent open problems for conducting independent investigations. As a matter of
fact, stimulation of reader’s research is the main priority of the book. A comprehensive
bibliography will guide the audience in an appropriate scientific direction.

For many years, the author has enjoyed the opportunity to discuss derived results with
Russian colleagues L.A. Petrosjan, V.V. Zakharov, N.V. Zenkevich, I.A. Seregin, and A.Yu.
Garnaev (St. Petersburg State University), A.A. Vasin (Lomonosov Moscow State University),
D.A. Novikov (Trapeznikov Institute of Control Sciences, Russian Academy of Sciences),
A.V. Kryazhimskii and A.B. Zhizhchenko (Steklov Mathematical Institute, Russian Academy
of Sciences), as well as with foreign colleagues M. Sakaguchi (Osaka University), M. Tamaki
(Aichi University), K. Szajowski (Wroclaw University of Technology), B. Monien (Univer-
sity of Paderborn), K. Avratchenkov (INRIA, Sophia-Antipolis), and N. Perrin (University of
Lausanne). They all have my deep and sincere appreciation. The author expresses profound
gratitude to young colleagues A.N. Rettieva, J.S. Tokareva, Yu.V. Chirkova, A.A. Ivashko,
A.V. Shiptsova and A.Y. Kondratjev from Institute of Applied Mathematical Research (Kare-
lian Research Center, Russian Academy of Sciences) for their assistance in typing and
formatting of the book. Next, my frank acknowledgement belongs to A.Yu. Mazurov for his
careful translation, permanent feedback, and contribution to the English version of the book.

A series of scientific results included in the book were established within the framework of
research supported by the Russian Foundation for Basic Research (projects no. 13-01-00033-
a, 13-01-91158), Russian Academy of Sciences (Branch of Mathematics) and the Strategic
Development Program of Petrozavodsk State University.






Introduction

“Equilibrium arises from righteousness, and righteousness arises from the meaning of the
cosmos.”
From Hermann Hesse’s The Glass Bead Game

Game theory represents a branch of mathematics, which analyzes models of optimal decision-
making in the conditions of a conflict. Game theory belongs to operations research, a science
originally intended for planning and conducting military operations. However, the range of its
applications appears much wider. Game theory always concentrates on models with several
participants. This forms a fundamental distinction of game theory from optimization theory.
Here the notion of an optimal solution is a matter of principle. There exist many definitions of
the solution of a game. Generally, the solution of a game is called an equilibrium, but one can
choose different concepts of an equilibrium (a Nash equilibrium, a Stackelberg equilibrium,
a Wardrop equilibrium, to name a few).

In the last few years, a series of outstanding researchers in the field of game theory were
awarded Nobel Prize in Economic Sciences. They are J.C. Harsanyi, J.F. Nash Jr., and R. Selten
(1994) “for their pioneering analysis of equilibria in the theory of non-cooperative games,”
EE. Kydland and E.C. Prescott (2004) “for their contributions to dynamic macroeconomics:
the time consistency of economic policy and the driving forces behind business cycles,” R.J.
Aumann and T.C. Schelling (2005) “for having enhanced our understanding of conflict and
cooperation through game-theory analysis,” L. Hurwicz, E.S. Maskin, and R.B. Myerson
(2007) *“for having laid the foundations of mechanism design theory.” Throughout the book,
we will repeatedly cite these names and corresponding problems.

Depending on the number of players, one can distinguish between zero-sum games
(antagonistic games) and nonzero-sum games. Strategy sets are finite or infinite (matrix
games and games on compact sets, respectively). Next, players may act independently or
form coalitions; the corresponding models represent non-cooperative games and cooperative
games. There are games with complete or partial incoming information.

Game theory admits numerous applications. One would hardly find a field of sciences
focused on life and society without usage of game-theoretic methods. In the first place, it is
necessary to mention economic models, models of market relations and competition, pricing
models, models of seller-buyer relations, negotiation, and stable agreements, etc. The pioneer-
ing book by J. von Neumann and O. Morgenstern, the founders of game theory, was entitled
Theory of Games and Economic Behavior. The behavior of market participants, modeling
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of their psychological features forms the subject of a new science known as experimental
€conomics.

Game-theoretic methods generated fundamental results in evolutionary biology. The
notion of evolutionary stable strategies introduced by British biologist J.M. Smith enabled
explaining the evolution of several behavioral peculiarities of animals such as aggressiveness,
migration, and struggle for survival. Game-theoretic methods are intensively used in rational
nature management problems. For instance, fishing quotas distribution in the ocean, timber
extraction by several participants, agricultural pricing are problems of game theory. Today,
it seems even impossible to implement intergovernmental agreements on natural resources
utilization and environmental pollution reduction (e.g., The Kyoto Protocol) without game-
theoretic analysis. In political sciences, game theory concerns voting models in parliaments,
influence assessment models for certain political factions, as well as models of defense
resources distribution for stable peace achievement. In jurisprudence, game theory is applied
in arbitration for assessing the behavioral impact of conflicting sides on judicial decisions.

We have recently observed a technological breakthrough in the analysis of the virtual
information world. In terms of game theory, all participants of the global computer network
(Internet) and mobile communication networks represent interacting players that receive and
transmit information by appropriate data channels. Each player pursues individual interests
(acquire some information or complicate this process). Players strive for channels with high-
level capacities, and the problem of channel distribution among numerous players arises
naturally. And game-theoretic methods are of assistance here. Another problem concerns the
impact of user service centralization on system efficiency. The estimate of the centralization
effect in a system, where each participant follows individual interests (maximal channel
capacity, minimal delay, the maximal amount of received information, etc.) is known as the
price of anarchy. Finally, an important problem lies in defining the influence of information
network topology on the efficiency of player service. These are non-trivial problems causing
certain paradoxes. We describe the corresponding phenomena in the book.

Which fields of knowledge manage without game-theoretic methods? Perhaps, medical
science and finance do so, although game-theoretic methods have also recently found some
applications in these fields.

The approach to material presentation in this book differs from conventional ones. We
intentionally avoid a detailed treatment of matrix games, as far as they are described in
many publications. Our study begins with nonzero-sum games and the fundamental theorem
on equilibrium existence in convex games. Later on, this result is extended to the class of
zero-sum games. The discussion covers several classical models used in economics (the
models of market competition suggested by Cournot, Bertrand, Hotelling, and Stackelberg,
as well as auctions). Next, we pass from normal-form games to extensive-form games and
parlor games. The early chapters of the book consider two-player games, and further analysis
embraces n-player games (first, non-cooperative games, and then cooperative ones).

Subsequently, we provide fundamental results in new branches of game theory, best choice
games, network games, and dynamic games. The book proposes new schemes of negotiations,
much attention is paid to arbitration procedures. Some results belong to the author and his
colleagues. The fundamentals of mathematical analysis, algebra, and probability theory are
the necessary prerequisites for reading.

This book contains an accompanying website. Please visit www.wiley.com/go/game_
theory.
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Strategic-form two-player games

Introduction

Our analysis of game problems begins with the case of two-player strategic-form (equivalently,
normal-form) games. The basic notions of game theory comprise Players, Strategies and
Payoffs. In the sequel, denote players by I and /I. A normal-form game is organized in
the following way. Player / chooses a certain strategy x from a set X, while player /I
simultaneously chooses some strategy y from a set Y. In fact, the sets X and Y may possess
any structure (a finite set of values, a subset of R", a set of measurable functions, etc.). As a
result, players I and I/ obtain the payoffs H,(x,y) and H,(x, y), respectively.

Definition 1.1 A normal-form game is an object
I'=<LILX,Y,H ,H, >,

where X, Y designate the sets of strategies of players I and Il, whereas H,, H, indicate their
payoff functions, H; : XX Y = R,i=1,2.

Each player selects his strategy regardless of the opponent’s choice and strives for max-
imizing his own payoff. However, a player’s payoff depends both on his strategy and the
behavior of the opponent. This aspect makes the specifics of game theory.

How should one comprehend the solution of a game? There exist several approaches
to construct solutions in game theory. Some of them will be discussed below. First, let us
consider the notion of a Nash equilibrium as a central concept in game theory.

Mathematical Game Theory and Applications, First Edition. Vladimir Mazalov.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: http://www.wiley.com/go/game_theory



2 MATHEMATICAL GAME THEORY AND APPLICATIONS

Definition 1.2 A Nash equilibrium in a game T is a set of strategies (x*,y*) meeting the
conditions

Hl (X,_V*) < H](X*,y*),
Hy(x*,y) < Hy(x™,y") (1.1)

for arbitrary strategies x,y of the players.

Inequalities (1.1) imply that, as the players deviate from a Nash equilibrium, their payoffs
do decrease. Hence, deviations from the equilibrium appear non-beneficial to any player.
Interestingly, there may exist no Nash equilibria. Therefore, a major issue in game problems
concerns their existence. Suppose that a Nash equilibrium exists; in this case, we say that
the payoffs H = H,(x*,y*), Hj = H,(x*,y") are optimal. A set of strategies (x,y) is often
called a strategy profile.

1.1 The Cournot duopoly

We mention the Cournot duopoly [1838] among pioneering game models that gained wide
popularity in economic research. The term “duopoly” corresponds to a two-player game.

Imagine two companies, / and //, manufacturing some quantities of a same product (g,
and g,, respectively). In this model, the quantities represent the strategies of the players.
The market price of the product equals an initial price p after deduction of the total quantity
0 = g, + ¢>. And so, the unit price constitutes (p — Q). Let ¢ be the unit cost such that ¢ < p.
Consequently, the players’ payoffs take the form

H\(q1.q92) =P — 41 — 42)9, —cqy. Hy(q.q) =P =g, —q2)q; — gy (1.2)
In the current notation, the game is defined by I' =< I, 11, Q| = [0, ), 0, = [0,00), H|, H, >.

Nash equilibrium evaluation (see formula (1.1)) calls for solving two problems, viz.,
max H,(q,,43) and max H,(q}.q,). Moreover, we have to demonstrate that the maxima are
q) 92

attained at g, = ¢}, ¢, = ¢5. The quadratic functions H,(q,.q3) and H(q}.q,) get maxi-
mized by

q = % (p—c—q3)
q = % (p-c—gq}).

Naturally, these quantities must be non-negative, which dictates that
g <p-c i=12. (1.3)

By resolving the derived system of equations in ¢7, q;, we find

_p=c




