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Preface

The optical response of heterogeneous matter consisting of nanoparticles in a
surrounding matrix material is often easy to measure, but rather difficult to
describe, yet it is almost impossible to give a complete description.

I met this problem first when I joined Professor Kreibig’s group in Saarbriicken,
Germany, in 1983. [ soon learned that classical electrodynamics is helpful, but
solid-state physics is also indispensable when dealing with the optical properties
of nanoparticles and nanoparticle systems. In my subsequent studies in
Saarbriicken and Aachen electrodynamics became dominant, without losing sight
of solid-state physics. This was enabled by the long-lasting cooperation with
Uwe Kreibig, who is still engaged in the physics of interfaces and surfaces of very
small particles.

During the long period of research on the optical properties of nanoparticle
matter from 1983 to 2000 at the Universities of Saarbriicken, Aachen, Graz, Chem-
nitz, and Bochum, I became acquainted with several aspects of light scattering
and absorption by small particles in combination with solid-state physics. I learned
that a great variety of scientific and engineering disciplines have significant inter-
est in the optical properties of such inhomogeneous nanoparticle matter. Even
today, after ten successful years in industry, inhomogeneous nanoparticle matter
hits me again via optical metrology solutions for photovoltaics, thin films, organic
LEDs, and some further applications of nanoparticle systems. Hence the
most important motivation for this book came from applications of nanoparticle
matter.

The purpose of this book is to give first an overview of analytical and numerical
models for the optical response of nanoparticles and nanoparticle systems. It may,
therefore, appear to have a more theoretical character, but many experimental
results complement the various calculations. Second, and in the main, this book
provides many calculations on the spectral behavior of light scattering and absorp-
tion by nanoparticles and nanoparticle systems. Here, electrodynamics again
meets solid-state physics. The initial interaction of light with matter, expressed by
the frequency-dependent dielectric function of the particle material, enters
the electrodynamic scattering model and yields characteristic spectra that are
determined by the material-specific properties, the particle-specific topological
properties and statistics.
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Preface

To write this book required reading and evaluating of many monographs and
an even larger number of other publications on this subject. However, the amount
of published work is too immense to consider them all in such a book. I hope to
have included the most relevant and up-to-date literature, and apologize for all the
contributions not considered here.

Last but not least, [ want to acknowledge all the inspiration and encouragement
from many people during the writing of this book. Special thanks are due to Uwe
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the people who gave me the chance to increase and to improve my knowledge on
this subject with a stay in their groups: A. Heilmann (Halle), R. Wannemacher
(Leipzig), F. R. Aussenegg and A. Leitner (Graz), R. Hempelmann (Saarbriicken),
Th. Henning (Jena), and G. Schweiger (Bochum). I also gratefully acknowledge
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their support and patience with me during the writing of this book.
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Figure 1.1 The conduction electron oscillator in a silver nanoparticle compared with the
conduction electron relaxator in a silver film.

not realize it, nanoparticles belong to our everyday life: cosmetics, medicines,
alternative energy, communication, and displays are examples which benefit from
the basic science of nanotechnology. As in various applications the magic thresh-
old of 100 nm is exceeded, this book also treats nanoparticles up to 999nm in size
so as to include these cases.

A reduction in size down to a few nanometers often leads to size- or material-
specific peculiarities which can be used in new applications of the materials. These
peculiarities cannot be observed with macroscopic pieces of the same material.
For example, nanoparticulate matter exhibits increased hardness, fracture strength,
additional electronic states, increased chemical selectivity, and increased surface
energy. One of the most interesting peculiarities is the resonant absorption of light
by nanometer-sized gold or silver particles. Unlike in bulk gold and silver, the
collective excitation of the conduction electrons by an external electromagnetic
field does not result in a relaxator but is transformed into an oscillator type of
behavior with a distinct resonance, called surface plasmon polariton. Figure 1.1
illustrates this behavior for a silver nanoparticle (oscillator) compared with a bulk
silver film (relaxator).

Hence metal nanoparticles play a particularly pronounced role in nanomaterial
science. Nature even seems to have a preference for metals. More than two-thirds
of all elements are metals. When looking at the optical properties of nanoparticles,
not all metals exhibit such striking properties as gold and silver, nor do most of
the metal particles remain unchanged under ambient conditions. Rather, oxides,
sulfides, nitrides, and so on are formed with their own specific peculiarities.
Therefore, this book considers also the optical properties of nonmetallic nanopar-
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ticles and provides many examples of various nanoparticle systems of metallic,
semiconducting, carbonaceous, and dielectric particles.

During the last 40 years, a huge number of papers, reviews, and books have
appeared which are concerned with nanotechnology, nanoelectronics, nanoopto-
electronics, information technology with nanomaterials, self-assembly, nanostruc-
tured magnetic materials, nanocomposites, nanowires, and nanobelts. They
mainly cover mechanical, electronic, quantum mechanical, and medical aspects,
with little attention to optical properties. The most perceptible to humans, however,
are the optical properties, for example, the color of paintings and the colors due
to interference.

Optical properties of nanomaterials include elastic light scattering, absorption,
reflectance and transmittance, second harmonic generation, third-order nonlinear
optical properties, surface-enhanced Raman scattering, and others. This book
concentrates on the linear optical properties: elastic light scattering and absorption
of single nanoparticles and on reflectance and transmittance of nanoparticle
matter.

Elastic light scattering has turned out to be a powerful tool for examination of
the properties of small particles. Scientists and engineers from a large variety of
disciplines — physics, electrical engineering, meteorology, chemistry, biophysics,
and astronomy — are concerned with this field.

Hence light scattering and absorption by small particles has already been treated
in numerous textbooks [3-5] and monographs [6-16], so it would appear almost
unnecessary to write a further book on this topic. However, these monographs
either deal mainly with particles larger than 1000nm that are important in geo-
physics, planetary science, and astrophysics; nanoparticles appear here almost only
for species that are relevant for the Earth’s radiation budget and in astrophysics,
for example, carbon or silicates; or, they mainly consider in detail the spatial
(angular) distribution of scattered light. Only Kreibig and Vollmer [11] have given
a comprehensive overview of the optical properties of metallic nanoparticles, clus-
ters, and cluster matter, including a discussion of size and quantum size effects.
Their book is restricted to particle sizes less than approximately 100nm and to
metals for which nanoparticles exhibit characteristic resonances in absorption and
scattering. It gives a good overview of the developments in nanoparticle science
from the beginning in the 1970s until 1995 and includes also an overview of
preparation techniques. The present book is intended to fill the gap in the descrip-
tion of the optical properties of small particles with sizes less than 1000nm and
to provide a comprehensive overview of the spectral behavior of nanoparticulate
matter of metallic, semiconducting, carbonaceous, and dielectric particles.

From the physical point of view, the spectral behavior must be a function of the
photon energy hw. On the other hand, the optical properties of small particles
strongly depend on the size compared with the size of the electromagnetic radia-
tion, that is, the wavelength A. Moreover, in commonly used spectrometers for the
ultraviolet, visible, and near-infrared spectral ranges, the output is usually given
versus the wavelength. In this respect, the wavelength seems to be the appropriate
quantity which permits direct comparison with experimental results, for which I
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Figure 1.2 The influence of abscissa scaling on the appearance of optical data: extinction
cross-section spectra of yttrium nanoparticles (a) versus photon energy and (b) versus
wavelength.

preferably use the wavelength as abscissa to allow comparison with measured
optical properties. Note that in the mid- and far-infrared regions the wavenumber
in cm™ is often used. This quantity is proportional to the energy h, but has the
advantage of being measured in simple natural numbers instead of floating point
numbers. Figure 1.2 demonstrates the difference between wavelength and photon
energy as abscissa in the optical absorption spectra of nanoparticles. Using the
photon energy, the UV region becomes spread and the IR region squeezed, and
vice versa when using the (vacuum) wavelength.

In general, there are two steps on the way to the optical properties of a nano-
particle system. The first step (Figure 1.3) considers the geometry of a single
isolated nanoparticle and its intrinsic optical properties, that is, its dielectric func-
tion. This information enters a suitable classical electrodynamic model, derived
either rigorously or approximately, or formulated as a numerical method. The
enormous practical advantage of any electrodynamic scattering model is that it
enables one to compute numerically the optical response for arbitrary realistic par-
ticle materials. However, the classical electrodynamics used, being a phenomeno-
logical theory to describe light propagation, does not yield information about
optical material properties. They enter via the dielectric functions inserted into the
Maxwell boundary conditions, which must be taken from elsewhere, for example,
from experiments or from quantum solid-state theory model calculations. The
results of the first step are the optical properties of a single particle.



