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Preface

This monograph is devoted to the Navier-Stokes system in planar domains.

The Navier—Stokes system of equations, modeling incompressible, vis-
cous flow in two or three space dimensions, is one of the most well-known
classical systems of fluid dynamics and, in fact, of mathematical physics in
general.

The pioneering work of Leray in the 1930s established the global (in
time) well-posedness of the system in the two-dimensional case. It seemed
therefore that this case was “closed.” However, this was certainly not the
case; the subsequent development of fluid dynamics in three directions, the-
oretical, numerical and experimental, led to a great interest in flow problems
associated with “singular objects.” These objects, including point vortices
or vortex filaments, have been well-known since the early days of fluid dy-
namics in the eighteenth century. Their evolution in time serves as a central
feature in the overall description of the flow.

A fact that is common to all these singular cases is that the L? norm
of the associated velocity field (corresponding to the total energy of the
fluid) is not finite. On the other hand, the basic premise of Leray’s theory
is the assumption that this norm is finite! Thus, there has been no rigorous
mathematical theory applicable, say, to the motion of point vortices in two-
dimensional flows, while the numerical treatment of such motion (“vortex
methods”) has increased in popularity since the 1970s.

The rigorous treatment of the two-dimensional Navier-Stokes system
with such “rough initial data” was taken up only in the second half of
the 1980s. The first part of this monograph gives a detailed exposition of
these developments, based on a classical parabolic approach. It is based on
the wvorticity formulation of the system. A fundamental role is played by
the integral operators associated with the heat kernel and the Biot-Savart
kernel (relating the vorticity to the velocity).

v



vi Navier-Stokes Equations in Planar Domains

The system is considered either in the whole plane R? or in a square with
periodic boundary conditions. Thus, physical boundary conditions (such
as the “no-slip” condition) are not considered in this part. It is remarkable
that the rigorous treatment of the motion of an initial vortex in a bounded
planar domain remains an open problem!

On the numerical side, on the other hand, we cannot avoid the case
of a bounded domain, subject to physically relevant boundary conditions.
However, such boundary conditions are not readily translated into “vortic-
ity boundary conditions.” The progress made in the last twenty years in
terms of “compact schemes” has produced very efficient algorithms for the
approximation of the biharmonic operator. In turn, the use of the stream-
function formulation of the system has become a very attractive option;
the system is reduced to a scalar equation and the boundary conditions
are naturally implemented. The appearance of the biharmonic operator
in this equation seems a reasonable price to pay. The second part of this
monograph gives a detailed account of this approach, based primarily on
the authors’ work during the last decade.

We provide detailed introductions to the two parts, where background
material is expounded. The first (theoretical) part is supplemented with
an Appendix containing topics from functional analysis that are not read-
ily found in basic books on partial differential equations. Thus, this part
should be accessible not only to specialists in mathematical analysis, but
also to graduate students and researchers in the physical sciences who are
interested in the rigorous theory.

In the second (numerical) part, we have made an effort to make it wholly
self-contained. The basic relevant facts concerning difference operators are
expounded, making the passage to modern compact schemes accessible even
to readers having no background in numerical analysis. The accuracy of the
schemes as well as the convergence of discrete solutions to the continuous
ones are discussed in detail.

This monograph grew out of talks, joint papers and short courses given
by us at our respective institutes and elsewhere. Stimulating discussions
with S. Abarbanel, C. Bardos, B. Bialecki, A. Chorin, A. Ditkowski, A. Ern,
G. Fairweather, S. Friedlander, T. Gallay, J. Gibbon, R. Glowinski, J.-L.
Guermond, G. Katriel, P. Minev, M. Schonbek, C.-W. Shu, R. Temam, S.
Trachtenberg, E. Turkel, and D. Ye were very valuable to us.

One of us (D.F.) was the first graduate student of the late David Got-
tlieb. All three of us enjoyed his hospitality at Brown University during
the summer of 2007. In spite of his failing health, he generously gave us his
attention and his comments helped us shape Part II of the monograph.
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The second author (J.-P.C.) thanks B. Courbet, D. Dutoya, J. Falcovitz,
and F. Haider for illuminating discussions on the numerical treatment and
the physical understanding of fluid flows.

Special thanks are due to I. Chorev. Section 11.2 is based on his M.Sc.
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PART I
Basic Theory

Big whirls have little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity.

L. F. Richardson, Weather Prediction by Numerical Process (1922).






Chapter 1

Introduction

In this part of the book we establish the existence, uniqueness and reg-
ularity theory of solutions to the Navier-Stokes equations in two spatial
dimensions. In addition, we also discuss the large-time asymptotic behav-
ior of these solutions.

The main theme of the monograph (in both the theoretical and the nu-
merical parts) is the evolution of the vorticity in the planar geometric
setting. The recognition of the vorticity as a central object in the under-
standing of fluid flow dates back to the early days of this field. We refer
the reader to the classic books [123,124], where the physical significance,
as well as numerous examples, are expounded.

More recently, a growing number of researchers, both in Mathematical
Fluid Dynamics and in Computational Fluid Dynamics, have turned their
attention to the vorticity in their studies. This increased interest is well
reflected in the books [43,133,157].

The present monograph also highlights the fundamental role of vorticity
(and its associated streamfunction) in the study of the Navier—Stokes sys-
tem. However, the topics treated here are different from those addressed in
the aforementioned books [43,133,157]. Indeed, Chorin’s book is mostly de-
voted to the statistical physics aspects of vorticity (and turbulence), which
we do not discuss here. The book by Majda and Bertozzi presents a unified
treatment of the Navier-Stokes and the Euler equations, focusing primarily
on the latter, whereas we deal exclusively with the Navier—Stokes equations
in two dimensions. Our aim is to study the evolution of vorticity for rather
general initial data, beyond the classical Leray theory. We shall return to
this later in this chapter.

We refer to [44,123,124] for extensive discussion of the basic equations
governing viscous (incompressible) fluid flow. We briefly recall these equa-



4 Navier-Stokes Equations in Planar Domains

tions in the physical three-dimensional setting, and then restrict to the
two-dimensional case, the subject matter of this monograph.

In order to distinguish between scalar and vector-valued functions we
use boldface for vectors and vector functions in R"™. Their components are
labeled as w = (w!,...,w"). In particular, for the Navier-Stokes equations
this convention applies both to the planar case (n = 2) and the three-
dimensional case. The scalar product is denoted by a-b = 3"", a*-b" and
the Euclidean norm is |w|? = Y"1, (w)?.

Partial derivatives with respect to the time or spatial coordinates are
denoted, respectively, by 0, = ?96?’ By = %. Using the gradient operator
V ={0;1,...,0;n } we can represent the divergence and curl of a vector field
u by, respectively, V-u and V x u.

Occasionally (especially in integration) we will write V for clarity.

The Laplacian operator is A=V -V =37, 2.

If o € Z7} is a multi-index, we let V& =[], 9% and |a| = 31, &

Denoting the velocity by u(x,?), the pressure by p(x,t) and the (con-
stant) coefficient of viscosity by v (v > 0), the Navier—Stokes equations in
a domain Q C R", n = 2,3, are

Ou+ (u-V)u=—-Vp+rvAu,

(1.1)
V-u=0.
The equations are supplemented by an initial condition
(1.2) u(x,0) = ug(x),

and, if 2 # R™, by boundary conditions (such as u = 0, the “no-slip”
condition) on the boundary 9%, for all t > 0. If Q@ = R", a growth (or,
rather, decay) condition must be imposed on u at infinity.

These equations should yield solutions u(z,t), p(x,t), for x € 2 and all
positive time t € Ry = (0,00). The term “
fact that, in a suitable functional framework, the solution should not only
be unique but depend continuously on the initial and boundary data.

In the case that ug € L?(2) (or up € H'(Q)) the existence of weak
solutions to the problem (strong for H'({2)) has been known since the
pioneering work of Leray [125], (see also [128] for the case of the full plane).
Strong well-posedness is only local in time if n = 3, and is global in time if
n = 2. We refer to [47,54,121,171] where the Galerkin approach (originally
used by Leray) is expounded.

Regarding whether the system (1.1)—(1.2) is well-posed beyond the L?
framework, we refer to [75,116] and references therein, as well as to earlier

well-posedness” expresses the



