
Advances in Cognitive Science VOLUME 1

Edited by Narayanan Srinivasan

A.K. Gupta Janak Pandey

Advances in Cognitive Science

Volume 1

Narayanan Srinivasan
A.K. Gupta
Janak Pandey

Copyright © Narayanan Srinivasan, A.K. Gupta, and Janak Pandey, 2008

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system, without permission in writing from the publisher.

First published in 2008 by

e:

SAGE Publications India Pvt Ltd B1/I-1 Mohan Cooperative Industrial Area Mathura Road, New Delhi 110 044, India www.sagepub.in

SAGE Publications Inc 2455 Teller Road Thousand Oaks, California 91320, USA

SAGE Publications Ltd 1 Oliver's Yard, 55 City Road London EC1Y 1SP, United Kindom

SAGE Publications Asia-Pacific Pte Ltd 33 Pekin Street #02-01 Far East Square Singapore 048763

Published by Vivek Mehra for SAGE Publications India Pvt Ltd, typeset in Stone Serif 10/13 pt. by Innovative Processors, New Delhi, and printed at Chaman Enterprises, New Delhi.

Library of Congress Cataloging-in-Publication Data

Advances in cognitive science / edited by Narayanan Srinivasan, A.K. Gupta, Janak Pandey. p. cm.

Includes bibliographical references and indexes.

1. Cognition. 2. Cognitive science. I. Srinivasan, Narayanan. II. Gupta, A.K. III. Pandey, Janak, 1945–

BF311.A31

153—dc22

2008

2008017471

ISBN: 978-0-7619-3649-7 (HB)

978-81-7829-814-6 (India-HB)

The SAGE Team: Sugata Ghosh, Jasmeet Singh, Anju Saxena and Trinankur Banerjee

List of Abbreviations

ANCON	Artificial Intelligence	GTVH	Global Theory for Verbal Humor
	A Analysis of Covariance	HG	Hunting–Gathering
ANN	Artificial Neural Nets	HWT	Hidden Words Test
ANOVA	Analysis of Variance	IA	Irrigation Agriculture
CARG	Cognitive Anthropology Research	ICC	Immuno-Cytochemical
0.1.0	Group	ID	Intra-unit Distinctiveness
CAS	Cognitive Assessment System	IEGs	Immediate Early Genes
CBCS	Centre for Behavioural and	IQs	Intelligent Quotients
	Cognitive Sciences	IR	Incongruity-Resolution
CBL	Constraint-Based Lexicalist	ITFs	Inducible Transcription Factors
CFG	Context-Free Grammar	JAPE	Joke Analysis and Production
CMS	Computer Models and Simula-		Engine
	tions	KE	Knowledge Extraction
CPM	Coloured Progressive Matrices	KR	Knowledge Resources
CS	Conditioned Stimulus	LGN	Lateral Geniculate Nuclei
CT	Computational Topography	LH	Left Hemisphere
DA	Dry Agriculture	LIBJOG	Light Bulb Joke Generator
DID	Dissociative Identity Disorder	LOT	Locating Objects Test
DIF	Differential Item Functioning	LRFB	Left-Right-Front-Back
DPEP	District Primary Education	LTAG	Lexicalized Tree-Adjoining
	Project		Grammar
EC	Extra-unit Connectedness	LTM	Long-term Memory
EEG	Electroencephalogram	MEG	Magneto-encephalography
EPDA	Embedded Push-down Automata	MRI	Magnetic Resonance Imaging
EPSP	Excitatory Post-Synaptic Potential	mV	Membrane Potential
ERPs	Event Related Potentials	NIMHANS	S National Institute of Mental Health
ESP	Extra-Sensory Perception		and Neurosciences
FCD	Functional Coordination Deficit	NIRS	Near Infrared Spectrometry
fTCD	Functional Transcranial Doppler	NMDA	N-methyl D-aspartate
	Sonography	NSEW	North-South-East-West
FHN	FitzHugh-Nagumo	OET	Object Enumeration Test
fMRI	Functional Magnetic Resonance	OVS	Object Verb Subject
	Imaging	PDA	Pushdown Automata
FoR	Frames of Reference	PET	Positron Emission Tomography
GraPHIA	Graphical Phonological Humor	RA	Relative Absolute
	Identification Algorithm	RH	Right Hemisphere
	9		G

xvi | List of Abbreviations

RHD	Right Hemisphere Damage	SR	Success Rate
RLFB	Right, Left, Front and Back	SRT	Syllogistic Reasoning Test
RPM	Raven's Progressive Matrices	SSTH	Semantic Script Theory of Humor
RT	Reaction time	STM	Short-term Memory
SES	socio-economic status	TMS	Transcranial Magnetic Stimulation
SFB	Senguin Form Board	TRN	Thalamic Reticular Nucleus
SLD	Specific Learning Disability	TTX	Tetrodotoxin
SOA	Stimulus Onset Asynchrony	UWT	Unfamiliar Words Test
SPEFT	Story-Pictorial Embedded Figures	VCT	Visual Closure Test
OI DI I	Test	VSCCs	Voltage-sensitive Calcium Channels
SPM	Standard Progressive Matrices	WM	Working Memory

Preface

In the last four decades, cognitive science has established itself as a truly inter-disciplinary science. Cognitive science is an intellectual enterprise that studies cognition and seeks to answer many fundamental and long-standing questions about the nature of mind and mental processes. The central assumption for cognitive science can be phrased as follows: 'The human mind is a complex system that receives, stores, retrieves, transforms and transmits information'. Here the mind is conceived as an information processor. Herbert Simon, a pioneer in cognitive science and artificial intelligence defines cognitive science as 'recognition of a fundamental set of common concerns shared by the disciplines of psychology, computer science, linguistics, economics, epistemology and social sciences generally'. Cognitive science is the multidisciplinary scientific study of cognition and its role in intelligent agency. It examines what cognition is, what it does, and how it works.

An important way in which cognitive science approaches the mind is to view the scientific study of the mind in terms of three levels of analysis proposed by David Marr for understanding cognition, namely, computational, algorithmic and implementational levels. While there have been disagreements about the three levels of analysis and the way they are related to each other, these levels of analysis provide a framework for understanding and studying cognition. Palmer and Kinchi discuss three assumptions of information processing approach: informational description, recursive decomposition and physical embodiment. These assumptions enable us to discuss mental states as informational events, specify an informational event at one level in terms of component informational events at a lower level, and use the concept of representations (states of the system that carry information) and processes (changes in states/representations).

Cognitive science employs qualitatively different research tools such as formal methods used to develop computational proofs, the programming techniques of computer science, the experimental practices of psychology, and a variety of paradigms (single-cell studies, lesions, neuroimaging) of neuroscience. Given the current advances, it is expected that cognitive science will become even more inter-disciplinary.

Cognitive science is not yet a flourishing discipline in India. Under the Universities Grants Commission (UGC) Scheme of Universities with Potential for Excellence, the University of Allahabad was selected for developing 'Behavioural and Cognitive Sciences' as an Island of Excellence. As a follow-up, the University established the Centre for Behavioural and Cognitive Sciences (CBCS) in 2002, for providing education of merit and distinction in line with new developments and challenges, as a constructive opportunity for advancement of scientific knowledge through basic and applied research and teaching as well as outreach programmes. The objectives of the academic programme are to provide

comprehensive training and prepare the students for a professional/research/academic career, to develop a richer understanding of mental processes and neural mechanisms underlying cognition using behavioural, computational and neurophysiological techniques. All aspects of behavioural and cognitive sciences are explored to understand the nature of cognitive and information processing system as well as to explore possible applications for the individual and the society. The faculty and students at the Centre are involved in research programmes pertaining to vision, attention, perception, linguistics, cognitive neuroscience, consciousness, cognitive disorders, cognitive modelling and human computer interaction. There is a strong emphasis on research projects and exposure to various theoretical and experimental studies in cognitive science. The Centre and the University provide an ideal environment for study and research in cognitive science.

The International Conference on Cognitive Science was held on 16-18 December 2004 at the CBCS. The conference was the first of its kind in focussing on all aspects of cognitive science. The mission of the conference was to explore the truly inter-disciplinary nature of cognitive science and create awareness of cognitive science among the interested students and researchers. The conference served as the meeting point for scientists from interfacing disciplines like psychology, neuroscience, computer science, linguistics and philosophy. The conference elucidated current research on significant areas interfacing cognitive science such as language processing, culture and cognition, perception, cognitive disorders, consciousness, computational neuroscience, memory, social cognition and so on. The technical programme comprised six keynote lectures, 59 oral presentations and 22 poster presentations. The keynote lectures were presented by six prominent experts in cognitive science like Prof. Aravind K. Joshi, University of Pennsylvania, USA, Prof. Jyotsna Vaid, Texas A and M University, USA, Prof. Ype Poortinga, University of Tilburg, Netherlands, Prof. Avi Chaudhuri, McGill University, Canada, and Prof. John W. Berry, Queen's University, Canada. In addition to faculty members from various Indian universities and abroad, research scholars from various Indian and foreign universities attended the conference.

Based on the initial submissions of papers and abstracts for the conference, the editors requested the authors to submit full papers for the volume. All the editors reviewed the papers and 27 contributions were selected for publication in the current volume. Some contributions had to be excluded due to the stringent review process. The contributors are senior leading as well as young talented cognitive scientists from various countries including the USA, Canada, the UK, Germany, the Netherlands, Belgium, Switzerland, Denmark, Australia, New Zealand, Lebanon, Japan and India. The volume contains research articles addressing the challenges faced in cognitive science requiring cross-linking of different interfacing disciplines like psychology, neuroscience, computer science, linguistics and philosophy.

The recent findings from cognitive science presented in the volume will serve as a useful resource for scientists working in the area of cognitive science. The volume represents a

good sample of the current trends in major sub-disciplines in cognitive science. The book contains six sections: (1) Cognitive processes (2) Cognitive neuroscience (3) Computational modelling (4) Culture and cognition (5) Cognitive development and intervention, and (6) Consciousness. The first section contains eight chapters and focuses on the study of various cognitive processes ranging from vision and social cognition. The second section on cognitive neuroscience contains three chapters on cognitive neuroscience of vision and language as well as brain-behavioural asymmetry. The third section on computational modelling has four chapters spanning computational neuroscience and computational linguistics. The fourth section focuses on culture and cognition. This section has seven chapters discussing methodological and theoretical issues as well as related set of cross-cultural studies on spatial development. The fifth section on cognitive development includes four chapters discussing abnormal cognitive development and cognitive rehabilitation. The final section appropriately concludes with a chapter by Prof. K.R. Rao on consciousness with an Indian perspective.

The editors would like to acknowledge the efforts of many people who have contributed so much to the conference and preparation of this volume. Our colleague Dr Bhoomika R. Kar helped tremendously in organizing the conference and without her dedication the conference would not have been such a success. We would like to thank all the CBCS staff and students as well as research scholars from the Department of Psychology who worked very hard for the conference. The editors thank SAGE Publications for bringing out this volume.

Narayanan Srinivasan A.K. Gupta Janak Pandey

Contents

List of Tables	ix
List of Figures	xi
List of Abbreviations	xv
Preface	xvii
Section I Cognitive Processes	
CHAPTER 1 Hierarchical Organization of Complex Visuo-Motor Sequences V.S. Chandrasekhar Pammi, S. Bapi Raju, Ahmed, K.P. Miyapuram and Kenji Doya	7
CHAPTER 2 Orienting Attention and Cued Sustained Attention Indramani L. Singh, Pamela M. Greenwood and Raja Parasuraman	18
CHAPTER 3 Why Does Foveal Bias Decrease in the Presence of Additional Element? Muhammad Kamal Uddin, Takahiro Kawabe and Sachio Nakamizo	31
CHAPTER 4 New Associative Learning in Amnesia Suparna Rajaram and H. Branch Coslett	43
CHAPTER 5 The Coordinated Processing of Scene and Utterance: Evidence from Eye-Tracking in Depicted Events Pia Knoeferle and Matthew W. Crocker	50
CHAPTER 6 Script Indices Richard Sproat and Prakash Padakannaya	62
CHAPTER 7 How Do We Parse Compound Words? Gary Libben	71

vi | Advances in Cognitive Science

Other Minds: Social Cognition in Wild Bonnet Macaques Anindya Sinha	87
Section II Cognitive Neuroscience	
CHAPTER 9 A Survey of Molecular Mapping as Applied to Studies of the Visual System Avi Chaudhuri	111
CHAPTER 10 Neural Substrates of Language Processing in Bilinguals: Imagi(ni)ng the Possibilities Jyotsna Vaid	120
CHAPTER 11 Side Bias in Human Behaviour Manas K. Mandal, Hari S. Asthana and Ramakrishna Biswal	135
Section III Computational Modelling	
CHAPTER 12 Non-linear Dynamical Analysis of Point Neuron Models and Signal Propagation along Axon Deepak Mishra, Abhishek Yadav, Sudipta Ray and Prem Kumar Kalra	159
CHAPTER 13 Smoke Without Fire: What Do Virtual Experiments in Cognitive Science Really Tell Us? Peter R. Krebs	177
CHAPTER 14 Complex Primitives and Their Linguistic and Processing Relevance Aravind K. Joshi	188
CHAPTER 15 Dissecting the Frog: Computational Approaches to Humour Perception Narayanan Srinivasan and Vani Pariyadath	197

Section IV Culture and Cognition

CHAPTER 16 Sources of Evidence and Levels of Interpretation in Culture-and- Cognition Research Ype H. Poortinga	221
CHAPTER 17 Spatial Language and Concept Development: Theoretical Background and Overview R.C. Mishra and Pierre R. Dasen	240
CHAPTER 18 Spatial Encoding: A Comparison of Sanskrit- and Hindi-Medium Schools Aparna Vajpayee, Pierre R. Dasen and R.C. Mishra	253
CHAPTER 19 A Cross-Cultural Comparison of Spatial Language and Encoding in Bali and Geneva Pierre R. Dasen and Jürg Wassmann	264
CHAPTER 20 Culture, Language, Spatial Frames of Reference and Hemispheric Dominance R.C. Mishra and Pierre R. Dasen	277
CHAPTER 21 Cultural Adaptations and Cognitive Processes of Tribal Children in Chotanagpur R.C. Mishra and John W. Berry	287
CHAPTER 22 An Eco-cultural Perspective on Cognitive Competence John W. Berry	300
Section V Cognitive Development and Intervention	
CHAPTER 23 Experimental Approaches to Specific Disabilities in Learning to Read: The Case of Symmetry Generalization in Developmental Dyslexia Thomas Lachmann	319

viii | Advances in Cognitive Science

CHAPTER 24	
Cognitive Profiles of Children with Dyslexia	341
Bhoomika R. Kar and Nishi Tripathi	
CHAPTER 25	
Emergence of Social Play and Numeracy: A Related Development with	
Young At-Risk Students?	355
Geerdina M. van der Aalsvoort, Arjette M. Karemaker and Mieke P. Ketelaars	
CHAPTER 26	
Cognitive Stimulation of Rural School Children in India: An Evaluative	
Study	369
Malavika Kapur	
Section VI Consciousness	
CHAPTER 27	
Taxonomy of Consciousness	383
K. Ramakrishna Rao	
About the Editors and Contributors	424
Subject Index	434
Name Index	447

List of Tables

1.1 1.2	The percentage change of SR for the four sessions The key-press RTs for the four sessions	11 15
11.1 11.2	Incidence of left handedness across countries Theoretical notions behind the incidence of left handedness	143 145
15.1	A comparative study of theories of humour perception	208
16.1	An overview of four levels of psychometric equivalence of data and three levels of inclusiveness of interpretations	225
16.2	Extent to which validity of cross-cultural differences in score levels is open to empirical control (ruling out alternative explanations)	230
17.1	Spatial frames of reference in developmental psychology and in linguistics	241
18.1 18.2	Sample characteristics One-way ANOVA comparing Hindi-medium (H) and Sanskrit schools (S)	256 261
19.1 19.2	Sample characteristics of studies in Bali 2002 and 1994 Pearson correlation coefficients between language, encoding and background variables	265271
19.3	Pearson correlations between acculturation, language and encoding	272
20.1	Sample characteristics Pearson correlations between language, encoding and FDI Portial correlations controlling for age, gender, preschooling, grade	279 282
20.3	Partial correlations controlling for age, gender, preschooling, grade, years of schooling and school type ANOVA outcomes on brain lateralization measures, G and E encoding	282
20.4	groups	283
21.1 21.2 21.3 21.4 21.5	Mean score of groups on the measures of cultural dimensions Mean score of groups on differentiation measures Mean score of groups on contextualization measures Mean score of groups on integration measure Factor analysis outcomes on core cognitive measures	293 294 295 296 297
25.1	Design of the longitudinal study	359

x | Advances in Cognitive Science

25.2	The means and standard deviations of the instruments used to select the	
	subjects listed per school and per research condition	363
25.3	The means and standard deviations of the ECERS ratings per category	
	and the SES per school and per research condition	364
25.4	The means and standard deviations on number sense, counting and	
	ordering per school and per research condition	365

List of Figures

1.1	The 2×12 task procedure	10
1.2	The block-wise combination graph	12
1.3	Block-wise improvements of SR for all the three experiments	13
1.4	Session-wise improvements of SR for all the three experiments	13
1.5	Block-wise data of key-press RTs for all the three experiments	15
1.6	Session-wise data of key-press RTs for all the three experiments	15
2.1	Percentage of correct detection as function of two-hour time period	19
2.2	Perceptual sensitivity as function of event rate and cue validity	23
2.3	Sensitivity index scores as a function of cue validity	24
2.4	Sensitivity index scores as function of cue validity and block in low	
2.5	event rate	25
2.5	Sensitivity index scores as function of cue validity and block in high	
26	event rate	25
2.6	Mean sensitivity index scores under 300 and 450 SOA	26
3.1	Schematic representation of the experimental protocol	34
3.2	Mean displacements plotted as a function of 5 experimental conditions	36
3.3	Mean displacements plotted as a function of 5 experimental conditions	39
5.1	The Jackendovian architecture of the language system	52
5.2	A sketch of the competitive-integra	53
5.3	Example image from Experiment 1	56
5.4	Example item from Knoeferle and Crocker (2004)	57
6.1	Catenation operators, after Sproat 2000	63
6.2	Schematic illustration of script layout catenators	63
6.3	Illustration of the layout catenators in Chinese	63
6.4	Full and diacritic forms for Devanagari vowels, classified by catenator	
	inherent to the diacritic forms	64
6.5	Forms for diacritic Kannada vowels, classified by catenator	64
6.6	Anusvara in Devanagari (left) and Kannada for the word /pensil/	66
6.7	Layout details for /pensil/ in Devanagari	67
6.8	Layout details for /eešvaikya/ in Kannada	67
6.9	Layout details for /lakšmiiša/ in Kannada	67
10	Feature vector slots	68
11	Feature vector slots for Devanagari /peMsil/	68

xii | Advances in Cognitive Science

6.12 6.13	Feature vector slots for Kannada /eešvaikya/ Feature vector slots for Kannada /lakšmiiša/	68 69
7.1 7.2 7.3	A simplistic view of compound parsing A more adequate view of compound parsing (The APPLE II model) Left branching and right branching structures for English triconstituent	75 76
	compounds	78
7.4	The parsing of a left-branching triconstituent word in German	80
7.5 7.6	The parsing of a right-branching triconstituent word in German	81
7.0	A schematic representation for the parsing of ambiguous triconstituent compounds containing the morphemes 1, 2, and 3	83
8.1 8.2	Distribution of deceptive acts across different categories of tactical deception exhibited by Troops G I, G II and B I Correlation between the number of deceptive acts and the number of categories of tactical deception in which they were performed	97
	by males in the three study troops	99
12.1 12.2	Time response and phase portraits for HH model Time responses and phase portraits for FitzHugh–Nagumo neuron model	161
	at (a) $I = 0.5$ (b) $I = 1.5$ (c) $I = 2.35$	163
12.3	Nullclines for FitzHugh–Nagumo neuron model	164
12.4 12.5	Bifurcation diagram for FitzHugh–Nagumo neuron model	164
12.3	Time response and phase portrait for Wilson–Cowan model (a) $\rho_y = -2$ (b) $\rho_y = -3$ (c) $\rho_y = -9.5$	1.00
12.6	Bifurcation diagram for Wilson–Cowan model with ρ_v as the bifurcation	166
	parameter	167
12.7	Time response and phase portrait for cortical neuron model at (a) $I = -3$ (b) $I = 1.5$ and (c) $I = 6$	168
12.8	Bifurcation diagram for cortical neuron model	169
12.9	Response of Morris–Lecar model when current is injected only at first	107
	compartment	172
12.10	Response of Morris–Lecar model when current injection varies	
10 11	inversely with fourth root of axon length	173
12.11	Response of Morris–Lecar model when current injection varies	
12.12	inversely with square root of axon length Response of Morris–Lecar model when current injection varies	173
	inversely with square root of axon length	174
1 / 1		1/1
14.1	Domain of locality of a context-free grammar	189
14.2 14.3	Substitution Adjoining	189
11.5	rajoning .	190

List of Figures | **xiii**

14.4 14.5 14.6 14.7 14.8	An LTAG example An LTAG derivation An LTAG derived tree An LTAG derivation tree Two supertags for with	191 191 192 192 194
17.1	Results of previous studies (Bali, India, Nepal), absolute encoding for Animals task (3 animals only) and Steve's Maze	246
18.1 18.2	Animals: number of items with completely geocentric encoding, out of seven items, using four animals Chips: number of items with completely geocentric encoding, out of seven	259
18.3	items Steve's Maze: number of items with completely geocentric encoding, out of five items	260260
19.1 19.2	Mean items with absolute encoding for four animals (seven items) in three samples of 2002 study Absolute encoding on Animals and Chips, in Bali (2002 study) and in	268
22.1	Geneva Eco-cultural framework linking ecology, cultural adaptation and individual	274
22.2	behaviour Cultural transmission: Linkages between contexts and outcomes	304 305
23.123.2	Letter and shape stimuli used in different blocks in the experiment by Brendler and Lachmann (2001) Relationship between 'b-d' reversals in word reading and errors in	328
23.3 23.4	the same–different task with physical instruction and lexical material Mean RT (ms) as a function of angle of rotation for dyslexics and controls Accuracy rate (%) as a function of angle of rotation in the dyslexic and	329 332
24.1	normal reader group Errors in reading English	333 346
24.2	Errors in reading Hindi	346
24.3	Writing errors—English	348
24.424.5	Writing errors—Hindi Mean standard scores on PASS scales of CAS	349 350
24.324.624.7	Mean performance of children with dyslexia on subtests of CAS Cognitive processes in decoding	350 351
27.1 27.2	Consciousness as awareness States of awareness	384 384