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Preface

Numerical methods have evolved in recent decades, more intensely from the
1980s. However, this development cannot be compared with the development
that occurred with computers. Virtually every 3 years, a new computer becomes
obsolete.

While the solution of incompressible flows has been more frequent,
both numerically and analytically, the compressible flow solution is usually
obtained through numerical methods. The compressibility adds nonlinearities
to the system equations, which makes it hard to obtain analytical solutions.
In this context, the solution of reactive streams becomes even more
complex.

Reactive flows are complex, both at low or high temperature, because the
formulation typically adds to the Navier-Stokes equations a significant number
of nonlinear equations due to reactions.

The combustion of hydrogen, for example, includes about 20 elementary
chemical reactions and 8 species. So, eight equations, one for each species,
would be added to the equations of nonreactive flow. Even for such a simple
mechanism, the numerical solution is complex.

For methane combustion, one has about 300 elementary reactions among
some tens of chemical species. Biofuels such as methanol and ethanol involve a
similar number of elementary reactions as for methane. Complex fuels such as
n-heptane and iso-octane involve hundreds of chemical species and thousands
of elementary chemical reactions. For diesel and biodiesel there are thousands
of chemical species and tens of thousands of elementary reactions.

Reactions that occur in aqueous media involve numerous minerals in the
subsoil, about 4000, and tens of solutes. Of these, about 30 minerals and 15
solutes are the most important. Because the reactions in aqueous media are much
faster than those occurring with the minerals, aqueous reactions are considered
to be in equilibrium (occurring faster) in the subsoil.

Simplifications of chemical kinetics generally become an alternative. Small
mechanisms of a low number of species are often reduced using the assumptions
of steady-state and partial equilibrium. Large mechanisms are reduced using
a combination of techniques such as direct relation graph (DRG), to obtain
a skeleton mechanism and techniques based on the sensitivity analysis of the
eigenvalues and eigenvectors of the Jacobian matrix of the chemical system to
obtain a reduced mechanism.
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Thus, reactive flow is complex and compounded by the set of equations of
flow and chemical kinetics, which are solved by numerical methods frequently
of semi-implicit type.

This book contains seven chapters and two appendices that were organized
sequentially. However, readers, based on their experience, can read each chapter
independently.

Chapter 1 deals with the chemical equilibrium, both in aqueous solution
and in gaseous phase. Chapter 2 discusses chemical kinetics, starting with a
description of the reaction rates. Based on steady-state assumptions and partial
equilibrium, some reduced kinetic mechanisms are obtained. In the next chapter
are deducted equations for reactive flows based on the balance (conservation) of
the properties in the control volume. In Chapter 4, a formulation for mixing fluids
and the turbulence models based on characteristics of the flow scales are dis-
cussed. The Reynolds and Favre averages are discussed. In Chapter 5, models for
reactive flows are presented. Initially, techniques for obtaining reduced kinetic
mechanisms, such as DRG, sensitivity analysis, ILDM, REDIM, and flamelet
are presented. Then models for premixed flames, diffusion flames, and reactive
flows in porous media are shown. In Chapter 6, some of principal methods
used for the solution of reactive and nonreactive flows are introduced. Also
noteworthy are obtaining the generalized coordinates and the application of the
boundary conditions. The formulation at low Mach, very useful in the solution
of reactive flows, and some techniques for the acceleration of convergence are
presented. Finally, Chapter 7 discusses some solutions to diffusion flames, the
flow in porous media and the premixed combustion in porous media.

During the preparation of this book, we tried to use relatively simple ways
to model complex situations. Understanding the essence of a physical situation
may lead researchers to improve the technique, which then will take them to a
more detailed analysis.

The topics are described in a basic and objective way. Among the many
existing techniques, those that are more direct and frequently used are discussed.
In summary, this book aims to share with the readers some experiences gained by
the authors in the solution of reactive flows. It is hoped that the readers, relatively
quickly, can gain knowledge that can assist them in the modeling and simulation
of reactive flows of technical interest.
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