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Particulate Discrete Element
Modelling

This is the first dedicated work on the use of particulate DEM
in geomechanics and provides key information needed for engineers
and scientists who want to start using this powerful numerical
modelling approach. The book is a concise point of reference for
users of DEM, allowing them to maximize the insight they can
gain their material response using DEM covering;:

e The background theory

Details of the numerical method

Advice on running simulations

Approaches for interpreting results of simulations

Issues related to available particle types, contact modelling
and boundary conditions.

Particulate Discrete Element Modelling is suitable both for
first time DEM analysts as well as more experienced users. It will
be of use to professionals, researchers and higher level students,
as it presents a theoretical overview of DEM as well as practical
guidance on how to set up and run DEM simulations and how to
interpret DEM simulation results.

Catherine O’Sullivan is a Senior Lecturer in the Department
of Civil and Environmental Engineering at Imperial College, UK.
She obtained her undergraduate and master’s degrees at Univer-
sity College Cork, Ireland. Dr. O’Sullivan’s interest in DEM was
sparked during her doctoral studies in Civil Engineering at the
University of California at Berkeley, USA. Following graduation
from UC Berkeley in 2002, she spent two years working as a lec-
turer at University College Dublin, prior to moving to Imperial
College in 2004.
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Chapter 1

Intrbduction

1.1 Overview

Particulate DEM in geomechanics

Discrete element modelling (DEM) is a numerical modelling or
computer simulation approach that can simulate soil and other
granular materials. The unique feature of this approach is that it
explicitly considers the individual particles in a granular material
and their interactions. DEM presents an alternative to the typi-
cal approach adopted when simulating the mechanical behaviour
of granular materials (soils in particular), which uses a contin-
uum mechanics framework. In a continuum model soil is assumed
to behave as a continuous material and the relative movements
and rotations of the particles inside the material are not consid-
ered. Sophisticated constitutive models (i.e. equations relating
the stress and strain in the soil) are then needed to capture the
complexity of the material behaviour that arises owing to the par-
ticulate nature of the material. In DEM, even if simple numerical
models are used to simulate the inter-particle contacts, and ideal,
approximate, particle geometries are used, many of the mechanical
response features associated with soil can be captured. Simplify-
ing the particle shapes (e.g. using spheres) and adopting very
basic models of the contact response reduces the computational
cost of the simulation and thus allows systems involving relatively



Chapter 1. Introduction

large numbers of particles to be analysed while still capturing the
salient response characteristics of soil behaviour.

There are a range of established and emerging numerical meth-
ods that can be used to simulate granular material response and
so it is worth clarifying what the term “discrete element method”
means in the context of this text. In a discrete element simulation
a numerical model made up of a large number of discrete particles
or bodies is created. A discrete element method is a simulation
method where the finite displacements and rotations of discrete
bodies are simulated (e.g. Cundall and Hart (1993)). Within the
system it is possible for the particles to come into contact with
each other and lose contact, and these changes in contact status
are automatically determined. This definition excludes from con-
sideration the meshless or meshfree continuum methods including
smoothed particle hydrodynamics (SPH). In these methods the
“particles” are interpolation points, rather than being physical
particles, and so they are very similar to the nodes in a finite
element model.

Particulate DEM is used across a variety of disciplines, ranging
from food technology to mining engineering, however the seminal
publication in this area by Cundall and Strack (1979a), was pub-
lished in a soil mechanics journal (Géotechnique). Interest in the
method amongst geotechnical engineers has grown since this orig-
inal publication, with a marked increase in interest in recent years
as a result of the increase in computing power.

Y=0% v=15.3%

Figure 1.1: Simulation of a direct shear test using DEM



Particulate Discrete Element Modelling: A Geomechanics Perspective

There are two main motivations to use DEM amongst both
researchers and practitioners in the area of geomechanics. In the
first case, in a DEM model, loads and deformations can be applied
to virtual samples to simulate physical laboratory tests, and the
particle scale mechanisms that underlie the complex overall ma-
terial response can be monitored and analysed. In a DEM model
the evolution of the contact forces, the particle and contact ori-
entations, the particle rotations, etc., can all easily be measured.
It is incredibly difficult (and arguably impossible) to access all
this information in a physical laboratory test. Figure 1.1 illus-
trates a simulation of a direct shear test using particulate DEM.
The DEM model allows us to look inside the material and under-
stand the fundamental particle interactions underlying the com-
plex, macro-scale response. To date knowledge of soil response has
relied largely on empirical observation of the overall material re-
sponse in laboratory and field tests. DEM simulations thus present
geotechnical engineers with a valuable set of tools to complement
existing techniques as they seek to develop a scientifically rigor-
ous understanding of soil behaviour with likely improvements in
our ability to predict response in the field. DEM therefore is now
established as an essential tool in basic research in geomechanics.

A second, more applied, motivation for the use of DEM is that
it allows analysis of the mechanisms involved in large-displacement
problems in geomechanics. These problems cannot easily be mod-
elled using more widespread continuum approaches such as the
finite element method. Figure 1.2 illustrates a two-dimensional
DEM simulation of the insertion of a cone penetrometer into a con-
tainer of 117,828 disks (for details refer to Kinlock and O’Sullivan
(2007)). The particles are shaded according to the amount of
rotation they experience, with the particles distant from the pen-
etrometer coloured white as they experience little disturbance, and
those closest to the cone penetrometer (coloured black) being ro-
tated and displaced during the penetration. This figure indicates
that DEM can effectively accommodate the large displacements
involved in the penetration mechanism. Failures in geomechan-
ics often involve very large displacements or deformations, DEM
models can therefore inform our understanding of important fail-

3



Chapter 1. Introduction

ure mechanisms. Examples of mechanisms that cannot be simu-
lated using a continuum approach include internal erosion, scour
and sand production in oil reservoirs. Figure 1.3 shows a bridge
that collapsed in Ireland in 2009 following scour of its foundations,
highlighting the importance of being able to simulate this class of
problem.

Figure 1.2: Two-dimensional DEM simulation of cone penetrom-
eter penetrating a granular material (disk shading indicates mag-
nitude of rotation)

Outline of book

The objective of this book is to serve as an introduction to the
use of discrete element modelling to analyse the response of gran-
ular materials, focussing on applications in soil mechanics and
geotechnical engineering. The intended audience is people who
are thinking about using DEM, or people who are just starting to
use DEM, rather than those with years of experience. However,
hopefully users with some experience and DEM code developers
will also find aspects of the text interesting and useful. In any
case, it is assumed that someone interested in DEM is likely to be
a graduate or post graduate engineer or scientist with some idea
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