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Preface

In summer of 2001, we initiated a summer school program on the harmonic
analysis and its applications in nonlinear partial differential equations, with special
emphases on nonlinear Schrodinger equations, kinetic equations of Bolzmann type
and classical fluid equations. Over the years, there have been many distinguished
mathematicians working in these fields who have come to help our program and
to give series of special lectures. The program has been shown to be particularly
helpful to young researchers and students. The lectures involved have gradually
turned into more formal and regular seminars on Analysis in Partial Differential
Equations at the Morningside Center of Mathematics Academy of Mathematics

and System Science, Chinese Academy of Sciences.

From June 2007 to January 2008, we held a special semester PDE- program.
We invited many mathematicians and experts in mathematical theory of fluid me-
chanics and quantum mechanics. The visitors during that period includes: Bresch
Didier, Carles Rémi, Jean-Yves Chemin, Desvillettes Laurent, Lopes Filho Milton
C, Nussenzveig Lopes Helena J. Novotny, Antonin, Chao-Jiang Xu, Chongchun
Zeng, Ping Zhang and Yuxi Zheng, who gave a series of lectures and provided ex-
cellent lecture notes. It is no doubt that these lecture notes would be very useful
for many researchers and students. In this volume, we have collected lecture notes
by M. C. Lopes concerning the boundary layers of incompressible fluid flow; by C.
J. Xu on the micro-local analysis and its applications to the regularities of kinetic
equations; by Y. X. Zheng on the weak solutions of variational wave equation from
liquid crystals, and by P. Zhang and Z. F. Zhang on the free boundary problem of
Euler equations. In addition,we also included the notes by F. Nier on the hypoel-
lipticity of Fokker-Planck operator and Witten-Laplace operator that were given

earlier in the summer of 2006.

We have planned to publish in the forthcoming volumes the other lectures
notes. Some are from past lectures at our program and some will be collected
from the newly scheduled seminars. We hope that the publication of these lec-
ture notes may provide valuable references and up-to-date descriptions of current
developments of various related research topics, that will benefit many young re-
searchers or graduate students. We wish to take this opportunity to thank the
Morningside Center of Mathematics, the Institute of Mathematics of AMSS that
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provides all necessary supports. We are particularly grateful to professor Lo Yang
for his constant help, supports and encouragements to our program. We also would
like to thank Guilong Gui for his careful preparations of the latex file of the entire
book. We finally appreciate for the financial support from the Chinese Academy

of Sciences.

Fanghua Lin in New York
Xueping Wang in Nantes
Ping Zhang in Beijing
On November 3, 2008
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Boundary Layers and the Vanishing
Viscosity Limit for Incompressible 2D
Flow

Milton C. Lopes Filho!

Abstract

This manuscript is a survey on results related to boundary layers and the vanishing
viscosity limit for incompressible flow. It is the lecture notes for a 10 hour mini-
course given at the Morningside Center of Mathematics, Academia Sinica, Beijing,
PRC from 11/28 to 12/07, 2007. The main topics covered are: a derivation of
Prandtl’s boundary layer equation; an outline of the rigorous theory of Prandtl’s
equation, without proofs; Kato's criterion for the vanishing viscosity limit; the van-
ishing viscosity limit with Navier friction condition; rigorous boundary layer theory
for the Navier friction condition and boundary layers for flows in a rotating cylinder.

Keywords and phrases: Incompressible flow, Navier-Stokes equations, Euler
equations, vorticity, boundary layers

1. Introduction

In 1904, the issue of heavier-than-air, self propelled flight by human-made machines
was at the very edge of both science and technology. The first such flight, by the
Wright brothers, occurred at December 14th, 1903. A Brazilian author is honor
bound to remark that a more satisfying, and better publicized “first flight” was
achieved by Santos Dumont, a Brazilian living in France, in September, 1906. The
flight of a fixed-wing airplane could, at least in principle, be described by near-
steady, zero-viscosity, irrotational theory of airfoils, which was already available
at the beginning of the twentieth century.

Classical airfoil theory explained satisfactorily the balance of forces in a wing
in steady flight. In short, the force that air exerts on the wing is divided into
two standard components: the lift (vertical force) and the drag (horizontal force),
where horizontal means the direction of steady motion. In steady flight, these

1 Departamento de Matematica, IMECC-UNICAMP. Caixa Postal 6065, Campinas, SP 13083-
970, Brasil. E-mail:mlopes@ime.unicamp.br.



2 Milton C. Lopes Filho

forces are balanced by the weight and the propulsion force. The theory predicts
that the lift and the drag are proportional to the circulation of air velocity around
the airfoil, and it was in agreement with experiments, see [1] for details. Trouble
occurs when one wants to change the lift, as one should do when attempting to take
off or land in a fixed wing aircraft. A theorem, due to Lord Kelvin, states that the
circulation around a material curve, such as the boundary of an airfoil, is a constant
of motion in ideal (i.e. non-viscous) flow — or maybe, nearly constant in slightly
viscous flow. So, changing propeller speed and moving control surfaces does not
change the circulation. Since airplanes start out at rest, with zero circulation
around the wings, no airplane could, on theoretical ground, develop a lift, and
therefore fly. Something was clearly wrong with the theory.

The correction was due to the young theoretical mechanician Ludwig Prandtl
(1875 — 1953), who published a short paper in the Proceedings of the Third
ICM (Heidelberg 1904) whose German title roughly means as “fluid flow in very
little friction”. In this article, Prandtl established a perfectly satisfactory and
revolutionary explanation of the following observation:

(O) The interaction of incompressible flow with a material boundary is completely
different if the flow has very small viscosity or none at all.

This observation, the associated explanation, called boundary layer theory
and some of what mathematicians made of this subject in the following century
and a bit, make up the subject of these lectures. For a thorough account of the
development and understanding of the physics of boundary layers, we would like
to refer the reader to the classical book [29]. It can be argued that this short paper
by Prandtl marks the birth of modern applied mathematics.

The theory of boundary layers is a cornerstone of modern fluid mechanics,
but, as in much of this field, it lacks a rational framework, i.e. a rigorously estab-
lished connection with first principles. Although substantial mathematical work
has been done in this direction, some basic questions remains unanswered. The
purpose of these lectures is to probe the boundaries in the mathematical under-
standing of the interaction between nearly ideal flow and solid objects, perhaps
to bring what is not known about this question more sharply into focus. The
choice of material covered is strongly slanted towards recent work by the author
and his collaborators, and it includes detailed consideration of Kato’s criterion
for the vanishing viscosity limit in a bounded domain, a long discussion on the
vanishing viscosity limit for incompressible flows with Navier boundary condition
and the detailed behavior of circularly symmetric flow inside a rotating cylinder.
The choice of working with two dimensional flow is both a reasonable pedagogical
choice and a comfort zone for the author — in the issue of boundary layers, the
sharp distinction in behavior between 2D and 3D flows is not yet apparent, and
much of the work we will discuss here generalizes readily to 3D. Finally, we men-
tion that these notes are written thinking of a reasonably mature audience — we
assume, not only familiarity with standard PDE theory, but some familiarity with
the basics of mathematical fluid dynamics as well.

The remainder of these notes is divided in seven sections as follows: Section
9 contains a derivation of Prandtl’s equation; Section 3 contains a broad overview
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of rigorous results on Prandtl’s equation, including some of O. Oleinik’s work,
and more recent progress; Section 4 introduces and proves Kato’s criterion and
some related results; Section 5 is concerned with vanishing viscosity under Navier
friction conditions and a proof of LP vorticity estimates in this case; Section 6
contains an exposition on a rigorous method to treat boundary layer expansions
based on ideas of geometric optics, applied to the Navier boundary condition;
Section 7 explores a nearly explicit example of the behavior of the boundary layer
for the no-slip condition; Section 8 contains some conclusions and open problems.

2. Prandtl’s theory

In this section, we present an asymptotic derivation of Prandtl’s boundary layer
equation. Qur point of departure is the Navier-Stokes equations, which are an
expression of Newton’s second law applied to the motion of a fluid, subject to an
incompressibility constraint. We write

Ou+u-Vu=-Vp+ ulAu
{mvu=m 2.1)

where u is the fluid velocity, p is the scalar pressure and g is the kinematic viscosity
of the fluid. We have assumed that mass units have been chosen so that fluid
density is one.

For this derivation, and for most of the discussion in these lectures, we will
assume that we are discussing a two-dimensional fluid occupying a half plane H =
{z2 > 0}. Two dimensional fluids really occur either in a computer simulation,
or as three dimensional fluids which are translation-invariant along some direction
(often an unstable state of affairs) or as an approximate model for thin fluid
layers. Much of the discussion extends very naturally to a fairly general fluid
domain in three dimensions, but we will stay with the simplest possible situation
for pedagogical reasons.

As we all know, problem (2.1) requires a boundary condition at {z2 = 0}, and
the condition usually deemed appropriate is the no slip condition u(x1,0,t) = 0.
This condition expresses an assumption that viscous fluids adhere to material
objects, something that is neither physically nor mathematically obvious and was
subject for heated debate until the mid nineteenth century, when it became clear
that it gave good agreement with experiments.

Ideal, or inviscid flow is represented by solutions of Euler’s equations, which
is system (2.1) with g = 0. For ideal flow, the correct boundary condition is the
non-penetration condition ua(x1,0,t) = 0. The Navier-Stokes system is a singular
perturbation of the Euler system, because the small constant n appears in front
of the highest order term of (2.1). One consequence of this singular perturbation
is the disparity in boundary conditions between Euler and Navier-Stokes flows -
namely that u; at the boundary goes from being identically zero for any positive
viscosity to some (in principle) nonzero function when p = 0. This disparity is the
root cause of the boundary layer trouble.

Our objective here is to derive Prandtl’s boundary layer equations. This is
a way to quantify nearly ideal fluid behavior near the boundary by means of an
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appropriate set of limit equations. Let us begin with a simplifying assumption:
we assume that the disparity between ideal and viscous flow is concentrated on a
thin layer near zo = 0.

Our next step is to non-dimensionalize equation (2.1), using the time scale
T, the length scale L for horizontal lengths, and a reference vertical length scale
h. We introduce the non-dimensional constant v = pT/L?, which is a measure-
ment of the quotient of viscous by inertial forces in our flow, and measures in a
physically appropriate manner how far from ideal our flow really is. The non-
dimensionalization procedure simply means introducing new variables

» T
' (y,s) = Eul(Lyl, hy2,Ts),

~ T

U2(y, S) = Fu2(Lylv hy?»T$)7
and

~ T?

p(y,s) = ﬁP(Lyh hy2, T's).

which results in the system
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We introduce € = h/L, which is assumed to be a small, non-dimensional,
parameter because we are focusing in a thin layer. We also want to consider v
small. A key issue in boundary layer theory is that the magnitude of the small
parameters € and v are naturally related. Indeed, if v < €2 then matched asymp-
totics indicates that, to leading order, # satisfies the Euler system (with pressure
independent of the vertical variable) and with no-slip conditions at the boundary.
These boundary conditions are inconsistent with the fact that the Euler system
is of first order. On the other hand, if v > €2 then, to leading order, % is such
that 33217 = 0, which, together with the no-slip boundary condition implies that
i = c(y1)ye, for some vector c. Now, if U is to represent the behavior of the flow
in a thin layer near the boundary, then the velocity u should match the inviscid
velocity in the limit y, — oo, and not just blow-up. The only regime that appears
to yield a consistent asymptotic regime is

v/e? = O(1). (2.3)

From another perspective, condition (2.3) highlights the region near the boundary
where the vertical viscous stress balances the inertial terms in the Navier-Stokes
system. Assuming v = 2 and implementing matching asymptotics for v small
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we obtain the following system for the leading order approximation, denoted v =
(v, v?),
Osv' +v- Vvl = —0,,q+ a2, vt
ayzq =0 (2'4)
divyv = 0.
These are the unsteady Prandtl equations for the boundary layer profile v.
They represent the behavior of the flow near the boundary. To obtain a complete

problem, these equations must be supplemented with boundary conditions. First
we impose the no-slip condition

v=0at y2=0.

An additional condition must be imposed in order to capture the assumption that
far from the boundary layer the small viscosity Navier-Stokes solutions match the
Euler solutions. Let u* a family of solutions of the non-dimensional Navier-Stokes
equations with non-dimensional viscosity v and uF be a solution of the incom-
pressible Euler equations. For example, we can assume that both the family »”
and uF are defined by solving the Navier-Stokes equations and the Euler equations
with the same initial data u”(x,0) = u®(z,0) = uo(z).

Going back to the Prandtl system, we expect that v(y1,y2,t) — uF(y;,0,t) =
U(yi,t), as y2 — oo. Let p? be the pressure associated with the Euler solution
u®. Since ¢ does not depend on y,, looking at y2 — oo makes it also natural to
assume that g(yy,t) = p¥(y3,0,t). If we look at the Euler equations and evaluate
them at zo = 0 we obtain the following relation:

U;+UU,, = —P;’f = —Qy;,

which is called Bernoulli’s Law. This means that, for the Prandtl equation (2.4),
the condition at infinity U determines, up to an irrelevant constant, the pressure
q.

With this construction, we hope that, when v is small,

" [ (0}, ev?)(x1, 2/, t) for 22 < A(v)
u (1, 22,t) = {UE(.’L‘l,"Eg,t) for zo > A(v) +o(l), (2:5)

where A(v) is any cutoff distance such that e < A(v) < 1.
In addition to the time-dependent Prandtl equation, this derivation also
yields the steady Prandil equation, given by

v V! = —8,,q+ 820"
aqu = 0 (2.6)
divyv = 0.

The typical problem associated with this equation is a quarter-plane BVP, where a
profile v(0, y2) is given and one attempts to find v(y1,y2) for y1 > 0 as the induced
boundary layer profile over a half-plane plate.

The derivation above is a nice example of multiscale asymptotic analysis, and
from the complicated issue surrounding the interaction of nearly inviscid flow with
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material boundaries it derives a new equation, (2.4), and a simplified asymptotic
model for the behavior of Navier-Stokes solutions near a material boundary, given
by (2.5). The key issue that such a model raises is its validity (mathematical) and
applicability (physical).

This model has been found useful in applications, specially where it con-
cerns laminar boundary layers, and when its usefulness begins to break down,
suitable extensions of the model have been obtained, notably the so called “triple
deck” expansions, where an intermediate thin layer is added between the viscosity-
dominated internal layer and the free irrotational Euler flow. In this intermediate
layer, the flow is ideal, but not necessarily irrotational. One important situation
where the boundary layer ansatz breaks down is when boundary layer separation
occurs. Recall that one of the assumptions in deriving the Prandtl equation was
that the disparity between ideal and viscous flow be concentrates in a thin layer
near the boundary. It is quite common, even well within laminar flow regimes, that
the boundary layer detaches itself from the boundary and affects the bulk of the
flow. In that case, Prandtl’s theory and its extensions break down as models. In
the next section we will consider what is known regarding the rigorous validation
of the asymptotic approximation described here.

3. Prandtl’s equation

The purpose of this section is to present the known theory for Prandtl’s equation,
without much detail. The first question one must address regarding an approxi-
mate model is: can I solve it? The initial and boundary value problems for the
Euler and Navier-Stokes equations are well-posed, globally in the case of the half-
plane with reasonable initial data. So the issue of whether Euler + Prandtl is a
good approximation for Navier-Stokes with v small, in the sense discussed in the
previous section, depends first on understanding the well-posedness for Prandtl’s
equation. The mathematical theory of the Prandtl equation only got started in
the sixties, by O. Oleinik. Over the years, Oleinik and her group made a large
number of contributions to the theory of Prandtl’s equation and its many variants,
collected and explained in the book [27]. For the present discussion, we would like
to focus on one specific result, that first appeared in [26]. We also refer the reader
to the survey [5], for the discussion of Oleinik’s result and its relation with the
blow-up result of W. E and B. Engquist, [6].

Let v = (v',2?) be a solution of the IBVP for Prandtl’s equation, which we
write as

vl +v - Vol = —8,,q+ 820!

divo =0 _

v(z1,0,t) = 0 and limg, oo v' (2, ) = U(z1,1)
U(.’E, 0) = ’U()(il)),

Where —8;,q = Uy + UU,,. The result we wish to discuss is the following

(3.1)

Theorem 3.1. (Oleinik 1967) Assume that both U and v§ are positive and that,
in addition, O85,v3 > 0. Then there exists a unique global strong solution of (3.1).
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We will not present a proof of this result, but we will discuss a key part of
the proof, which is the recasting of this problem as a scalar, degenerate parabolic
scalar equation, using Crocco’s transformation.

We begin by taking the derivative of Prandtl’s equation with respect to z; and
introduce the new dependent variable w(z,t) = 0,,v!. System (3.1) is equivalent
to the following IBVP:

Ow+v-Vw= 02w

v = Kw]

(Ogow)(z1,0,t) = Oz,q and limg, oo w(z,t) =0
w(z,0) = 0z,v0(x),

(32)

where the vector operator K reconstructs (v!, v?) by first integrating in the vertical
variable to obtain v; and then using the divergence-free condition and integrating
again in the vertical variable to obtain vo. The new equation (3.2) is, in a sense,
the vorticity formulation of problem (3.1).

We assume that the solution v = v(z,t) we seek satisfies the condition
Oz, (z,t) > 0 for all z € H,¢t > 0. In particular, this means that, for each
fixed (x1,t), the map z2 +— v!(z1,z2,t) is invertible. Let us denote this inverse by
h = h(z1,€,t). In other words, we have

v (z1, h(z1,€,t),t) = €, for all € > 0. (3.3)
The Crocco’s transform consists of introducing the new dependent variable:

W =W (z1,§,t) = w(z, h(z1,€, 1), 1). (3.4)
We verify that W is a solution of the following IBVP:

OW + EW,, — (80, q)We = W2RW
WWe = g, for £ =0 (3.5)
W(x’ 0) = (6$2U0)(1:17 h’(xl ’ 57 0))

Indeed, we can compute directly to obtain:

1 1 2

v v Wrs a2 Weogy W
atW = _;t'w:cz + wy; aa:lW = _%wmz +wm1; 65W = “L‘UQ‘, aEW = 'ﬁ - ﬁ
Substituting the corresponding equalities above into (3.5), and using (3.4),
(3.3) and the evolution equations in (3.1) and (3.2) verifies the evolution equation

in (3.5). In addition, we can check directly that
Wz, (w17 Z2, t) = W(:Ehg-l(zlv T2, t)7 t)WE(II’g_l(xl’ Zg, t), t)7

which, together with the boundary condition in (3.2) gives the boundary condi-
tion in (3.5). Problem (3.5) is a scalar, degenerate parabolic equation, which is
amenable to fairly standard treatment, using fixed point methods, and satisfies a
comparison principle. In particular, the sign of W is retained in the evolution, and
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therefore, the monotonicity condition on v!, necessary for the validity of Crocco’s
transform, is retained as well.

Finally, once a solution W is obtained for problem (3.5), one must reconstruct
a solution to the original problem. Recall that

vl(w,g(w1,£, t)at) = ‘57
and therefore, differentiating this identity with respect to £ gives

w(z17g(z1’§7t)’t)g_z($17£vt) =1.

Recalling (3.4), this implies that

13
g(xla§7t):/0 (W(xlvnvt))_ldna

which allows the reconstruction of w from W by means of (3.4). The interested
reader may prove, as an exercise, that such an w is, in fact, a solution of (3.2).

This result, and others proved by Oleinik and her group, give useful, rigor-
ously established descriptions of the vanishing viscosity asymptotics, but depend,
to a greater or lesser extent, on monotonicity conditions such as d3,v§ > 0. As we
have seen, the monotonicity assumption is needed for the validity of the Crocco’s
transformation, but this assumption might just be a feature of the method, rather
than an essential limitation of the theory. In 1997, E and Engquist produced
a counterexample which showed that Prandtl’s equation develops finite-time sin-
gularities if the monotonicity condition is not imposed, see [6]. In fact, E and
Engquist’s example suggests that the role of the monotonicity assumption is to
prevent boundary layer separation, a phenomenon that actually occurs in real
flows and corresponds to a breakdown of the Prandtl ansatz.

An alternative to the half-plane analysis described above is to study well-
posedness of Prandtl’s equation in bounded intervals in z;, where the horizontal
velocity of the boundary layer profile is specified in one side of the interval, and the
length of the interval or the time horizon of the analysis are chosen small enough
to prevent separation. Such a result was first proved by Oleinik in [25]. Recently,
7. Xin and L. Zhang improved Oleinik’s result, showing existence of a global (in
time) weak solution for Prandtl's equation on a finite horizontal interval, if the
pressure is favorable, i.e., gz, < 0, see [34] and [35]. This condition is also known
to discourage boundary layer separation.

A different approach to the theory of Prandtl’s equation was taken, initially
by A. Asano, in a couple of unpublished manuscripts, and later by R. Caflisch
and M. Sammartino, in a pair of articles, see [28], recently further improved by
Lombardo, Cannone and Sammartino in [17]. The basic idea is that, without
the monotonicity condition, or something analogous to it, one expects the initial-
boundary value problem (3.1) to be ill-posed. As a result, it becomes natural to
look for local (in time) solutions for Prandtl’s equation in analytic function spaces,
using results of Cauchy-Kowalewska type. The main results in [28] were well-
posedness of the problem (3.1) if the data vg and U are analytic, and compatible. In
[17] the analyticity requirement on vo was imposed only in the horizontal variables.
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Of course, the well-posedness in analytic spaces, and the blow-up example by
E and Engquist does not prove that (3.1) is ill-posed, which at this time remains
an interesting open problem.

To conclude this section, it would make sense to mention the contribution of
E. Grenier, which he describes as nonlinear instability of the Prandtl boundary
layer. His result is not about Prandtl’s equation per se, but about the vanishing
viscosity limit of the Navier-Stokes equations. His result can be interpreted as
mathematical evidence that the Prandtl ansatz is not always valid for solutions of
the Navier-Stokes system in the half-plane with small viscosity, see [7]. In other
words, although the theory of Prandt!’s equation is relevant for understanding
the vanishing viscosity limit, there is more to the original observation (O) than
Prandtl’s original explanation for it.

4. Kato’s condition

In this section we move away from Prandtl’s equation, and we begin a study of
the vanishing viscosity limit from a broader point of view. Our first observation
should be that, even in the absence of boundaries, all the mysteries of turbulence
lurk in the background of the vanishing viscosity limit, see for example [18] for
a small part of this story. However, under moderate regularity assumptions, for
example, if the initial vorticity is bounded, explicit estimates for the difference
between Euler and small viscosity Navier-Stokes solutions are known, see [2]. Also,
and this distinction is a key point here, for very irregular flow, we still have the
existence of subsequences of solutions of small viscosity Navier-Stokes converging
to weak solutions of the Euler equations, up to and including initial vorticities
which are measures, see [23, 22|, but then no estimates on the difference are
provided, or expected. Basically, in the absence of boundaries, as long as the
underlying ideal flow has enough regularity so that uniqueness of weak solutions
to the Euler equations is known, we have actual convergence of the vanishing
viscosity limit. Furthermore, as long as existence of weak solutions is known we
also have compactness of the vanishing viscosity sequence and weak continuity of
the BEuler/Navier-Stokes nonlinearity. Nonuniqueness of weak solutions for Euler
equations is also known, see the remarkable paper [4], and references therein, for
the current knowledge on this nonuniqueness, but the behavior of the vanishing
viscosity limit for these examples is a very interesting open problem.

As soon as we consider flows in the presence of boundaries, the story changes
quite dramatically. Very little is actually known mathematically, and this very
little is precisely the object under discussion in these notes. Physically, bound-
aries are the most natural source of small scales in incompressible flows, precisely
through the boundary layer mechanism, and these small scales are the source of
the irregularities that justify considering irregular 2D flows in the first place. The
point of departure in our discussion will be a classical open problem, which we
formulate below.

9 Layer Problem: Let u” be a sequence of solutions of the incompressible
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Navier-Stokes equations in two space dimensions, in a smooth bounded domain £2,
satisfying the no-slip boundary condition on 6%, with initial data uf, bounded in
L?. Is there a subsequence u“* converging weakly in L? to a vector field u, which
is a weak solution of the incompressible Euler equations in  with some initial
data up = limug*?

This problem is open even if w§ = wy € CX(N), with wy = curl ug. Let
us focus, for simplicity, in this case. Clearly, the Navier-Stokes equations have a
unique smooth solution u* with initial data ug, and the Euler equations also have
a unique smooth solution v with the same initial data. We will see that there
are examples where u¥ — u in L2, but the answer to the problem above may be
positive even when u” does not converge to u, because there may be weak solutions
of the incompressible Euler equations with initial velocity ug which are not u.

In 1984, T. Kato wrote a short note where he proved a sharp criterion for
the convergence of u” to u, see [11]. The observation by Kato is remarkable for
at least two reasons. First, as we shall see, it is very natural from the analytical
point of view. Second, it places the condition for convergence on the behavior of
the small viscosity sequence at a distance O(v) of the boundary of €2, hence in a
much smaller region than what is the natural domain of the boundary layer. Next,
we state and prove a simple version of Kato’s criterion.

We focus on the case Q = {|z| < 1} in R2. Let wg € C°(Q) and uo = Kwa),
where K is the Biot-Savart operator in the unit disk. Let ©” be the unique classical
solution of the Navier-Stokes equation in ( with no-slip boundary condition and
initial velocity ug, and u be the unique smooth solution of the Euler equations
with -z = 0 for |z] = 1 and initial velocity ug.

Theorem 4.1. (Kato 1984) Fiz T' > 0. There exists a constant ¢ > 0 such that
u” — u strongly in L>((0,T); L*(2)) if and only if I/fOT IVu” (- )32, dt — O
asv — 0, where T, = {1 —cv < |z| < 1}.

Proof: First consider the energy identities for both u” and u. We have, for each
t >0,

t
I Oy = ooy +v [ [ (9o,
and )
H“(‘,t)uinn) = ||uollz2(qy)-

Therefore, if u¥ — wu strongly in L*((0,T); L*()), then ||u"(-,t)||2L:(Q) —
“u(',t)”ng(Q) for almost all time, and therefore

t
1// /IVU”|2dzdt—->0,
0o Ja

for each t > 0, not almost everywhere anymore since the integral in time is in-
creasing in time, and therefore,

t
V/ / |Vu”|2dzdt — 0,
0 cv
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as we wished.

To prove the other implication, fix € > 0 and let ¢* € C°(Q2) be such that
¢°(x) = ¢*(lz|), with p*(z) = 1 for |z| < 1—¢, ¢°(z) =0for 1 —g/2 < |z]| < 1,
and ¢° decreases monotonically from 1 to 0. Let w = curl u be the vorticity and
1) be the stream function associated with the Euler flow u. Define

Ue = VH(¢TY) = (=01, (6°9), 8z, (679))-
Let v = u—ue = V{((1—¢)1). The stream function ¢ vanishes at |z| = 1,

and it can be assumed to be uniformly bounded in C*, for any k = 1,2,..., so
that we can easily obtain the following estimates on v,:

l[vell oo ((0.1):L2(2)) < Cel'/? (4.1)
18eve | Lr(0,1y L2y < Ce*? (4.2)
Ve Lo (0,1)522(02)) < Ce1/? (4.3)
lvell Lo 0,7y x2) < C (4.4)
Vel Loo(o,myx) < Ce™! (4.5)

In addition, we require certain estimates on «”, uniform in v, which we collect
below

lu”{| oo (0, 1y;22(0)) £ C (4.6)
V”VUVH%OO((OYT);Lz(Q)) < C. (47)
By using Cauchy-Schwarz in time, we also have

1/2
P2V o myizaey < CT' ('/ /OT IIVu”H%z(mdt) <C (48
Finally, a version of Poincaré’s Inequality, which reads
lu”llz2r,) < CellVu|lLzr,) (4.9)
Now we estimate, omitting the explicit dependence of v on &:
lu” — ull}agy = w152y + lulife@) — 20" w)

< 2||u0||2L2(9) —2(u”,u — v) — 2(u”,v).

We have that
(u”, v)| < lu”lLeo(o,my2 ) 1Vl oo 0,7y L2(02)) < Ce'/2.

And therefore, taking € = Cv,

1w = wll 32y < 2lluollzz(ny — 2(u”,u—v) +o(1). (4.10)



