C.M. Aegerter, P. Gallion, S. Jiang, Y.V. Kartashov,
G. Maret, E Mendieta, M. Qiu, L. Torner,
V.A. Vysloukh, M. Yan, W. Yan




PROGRESS IN
OPTICS

VOLUME 52

EDITED BY

E. Wolf
University of Rochester, N.Y., U.S.A.

Contributors
C.M. Aegerter, P. Gallion, S. Jiang, Y.V. Kartashov, G. Maret, F. Mendieta,
M. Qiu, L. Torner, V.A. Vysloukh, M. Yan, W. Yan

Amsterdam « Boston « Heidelberg « London « New York « Oxford « Paris
San Diego « San Francisco = Singapore » Sydney « Tokyo



Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2009
Copyright © 2009 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Depart-
ment in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; e-mail: permis-
sions@elsevier.com. Alternatively vou can submit your request online by visiting the Elsevier
web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use
Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or prop-
erty as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions or ideas contained in the material herein. Because of rapid
advances in the medical sciences, in particular, independent verification of diagnoses and drug
dosages should be made

Library of Congress Catalog Card number: 61-19297

[SBN: 978-0-444-53350-0
ISSN: 0079-6638

For information on all Elsevier publications
visit our web site at elsevierdirect.com

08 09 10 11 12 1098 76 543 21

Printed and bound in Hungary



This volume presents four articles dealing with topics of considerable
current research activities. The first article by C. Aegerter and G. Maret
is concerned with localization of classical waves by strong multiple
scattering, with emphasis on propagation of visible light in optically
turbid media. When the multiple scattering is weak, there is a twofold
enhancement of the intensity of the scattered light in the back direction,
an effect known as coherent backscattering. The origin of this effect is
discussed, as well as experimental investigations of multiple scattering
of light in various media.

The second article by Y. V. Kartashov, V. A. Vysloukh, and L. Torner
gives an account of recent theoretical and experimental investigations
concerning soliton manipulation of lattices. Optical lattices make it
possible to control diffraction of light beams in media with periodically-
modulated optical properties to control reflection and transmission bands.
This leads to a rich variety of new families of nonlinear stationary waves
and solitons, offering novel opportunity for all-optical shaping, switching
and transmitting of optical signals. This technique offers new possibilities
of producing non-diffracting light patterns.

The article which follows, by P. Gallion, F. Mendieta and S. Jiang, deals
with basic quantum noise manifestations in optical amplification, optical
direct detection and coherent detection systems. Applications to optical
communications and quantum cryptography are also discussed.

The concluding article by M. Yan, W. Yan, and M. Qiu entitled
Invisibility Cloaking by Coordinate Transformation explains how recent
developments of new optical materials make it possible to produce
perfect invisibility cloaks. A review of recent theoretical and experimental
researchers for producing such cloaks is also given.

Emil Wolf

Department of Physics and Astronomy,
University of Rochester,
Rochester, NY 14627, USA

November 2008
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1. INTRODUCTION

Most of the time, we obtain information on an object by looking at it,
that is, we exploit the light that is scattered from it. The spectral and
angular distribution of the backscattered (and reflected) light gives us
information about the nature of the particles making up the object. For
instance, the reddish color of copper is determined by the absorption
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properties (in the green) of the d electrons in the partially filled shell.
On the other hand, the blue color of the sky is well known to originate
from the scattering properties of the air molecules, which follows Rayleigh
scattering with a cross-section proportional to 1/i*. This tells us that the
molecules are much smaller than the wavelength of light. In fact, a more
thorough analysis allows a characterization of the density fluctuations of
the air from the scattering properties of the sky. As a final example, we
mention the ‘Glory’, the halo sometimes seen around the shadow of an
airplane on clouds it is flying over, which will be discussed further below.
[n the following, we will be concerned with instances of such enhanced
backscattering in nature, where the intensity is enhanced in the direction
of backscattering. As we will see below, one such effect is due to the
interference of multiple scattering paths in disordered media like clouds,
milk or white paint. Due to the reciprocity of light propagation, such
paths will always have a counterpart of exactly the same length, which
implies that they will always interfere constructively in the backward
direction.

We will also discuss how this effect can lead to a marked change
in the transport behaviour of the light waves in a disordered system,
where diffuse transport comes to a halt completely. This transition is
known as Anderson localization, and has been of great influence in the
development of the theory of electrons in metals and condensed-matter
physics. However, as will be seen in the discussion of backscattering
enhancement below, the effect is also present in classical waves such as
light, and there have been great efforts to try and experimentally observe
the transition to Anderson localization of light.

In the rest of the introduction, we will discuss the ditferent instances
of enhanced backscattering in nature and their possible connection to
coherent backscattering. Then we will discuss the connection of coherent
backscattering to Anderson localization in more detail, before discussing
the main predictions of Anderson localization in order to guide the
experimental search for the effect.

Section 2 will return to coherent backscattering and will discuss in
detail the different experimental observations connected to recurrent
scattering, the influence of absorption and finite size of the medium,
as well as the problem of energy conservation. In that section we will
also discuss other instances of coherent backscattering, that is, with light
scattered by cold atoms as well as with waves other than light.

In Section 3 we will discuss the quest for Anderson localization of
light, describing the different experimental approaches used in the past, as
well as their advantages and disadvantages. Finally, we will concentrate
on our studies of time-resolved transmission and the corresponding
determination of critical exponents of Anderson localization of light.
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Introduction

1.1 Instances of Enhanced Backscattering

As first realized by Descartes (1637), the rainbow is an enhancement in
intensity (different for different colors due to dispersion) due to refraction
of light in the rain drops, which, due to the dispersion of water, is highest
at different angles for different colors. However, this is a purely geometric
effect, which does not yield information on the size of the rain drops
reflecting the light. Something akin to a rainbow can be seen when flying
in an airplane over an overcast sky. When the sun is low and the cloud
cover not too thick, one can see a beautiful halo around the shadow of the
plane on the clouds. The effect is also well-known to alpinists who can
observe this halo around their own shadow on a day that is hazy in the
valley. In contrast to what one might think, this ‘Glory’ as it is called, is not
in fact a rainbow. One can see this for instance by considering the angle
of this colorful enhancement, which is usually only a few degrees and
hence much smaller than the 42° corresponding to a rainbow. Therefore
another mechanism has to be at work. It has been shown that the size
of the scattering droplets influences the angle of the glory (Bryant and
Jarmie, 1974). It turns out that this is due to the Mie-scattering properties
(Mie, 1908) of the droplets. With a typical size of 10 um, the droplets in
a cloud are large compared to the wavelength of light. Furthermore, as
illustrated by experiments on a levitating droplet of water, Glory is the
property of a single drop (Lenke, Mack and Maret, 2002).

Enhanced backscattering is also commonly observed in forests, where
the leaves of dew-covered trees, or the blades of dew-covered grass, have
a halo. This effect is called sylvanshine (see e.g. Fraser (1994)) and is due
to the focusing action of the droplet on the reflecting surface of the leaf. By
the same principle, the diffuse reflection from the leaf is channeled back
through the lens (i.e. the drop) which decreases the angle of reflection.
Hence the leaves or the grass blades are brighter than the background.
The grass does not even need to be dew-covered to observe a halo, as there
is an additional effect increasing the intensity in the direct backscattering
direction. Exactly opposite to the incidence, any ensemble of rough objects
will be brightest. This is because in this direction, we see the reflected light
directly and none is lost due to shadows of other objects (Fraser, 1994).
This is known as the corn-field effect.

As a final instance of enhanced backscattering, let us mention
observation of the intensity of objects in the solar system, such as the
moon or other satellites of planets, when the earth and the sun are in
opposition to the moon. In that case, it was observed by Gehrels (1956) for
the moon and subsequently for many other satellites (Oetking, 1966) that
the intensity of the satellite is in fact increased over its usual value. Due
to the arrangement of sun and satellite when the effect is observed, this
was called the ‘opposition effect’. In this effect, coherent backscattering
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as we will discuss below, works in concert with analogues of the effects
described above, such as the corn-field effect. The presence of coherent
backscattering in the opposition effect was discovered (Hapke, Nelson
and Smythe, 1993). With this knowledge it was then possible to actually
study the surface properties (e.g. the granularity) of these satellites from
remote observations.

1.2 Coherent Backscattering

Among instances of enhanced backscattering, here we will be concerned
mostly with coherent backscattering, an interference effect that survives
all averages in a random medium. Fundamentally, the enhancement is due
to the fact that, because of time-reversal symmetry, every path through
a random medium has a counterpropagating partner. Light elastically
scattered on these two paths interferes constructively, because the path-
lengths are necessarily the same. This leads to an enhancement of exactly a
factor of two in the direction directly opposite to the incidence. In contrast
to Glory or other effects discussed above (Lenke, Mack and Maret, 2002),
coherent backscattering is not an interference due to the properties of a
single scatterer, but relies fundamentally on multiple scattering. In fact,
in the single-scattering regime there cannot be a coherent backscattering
cone as there cannot be a counterpropagating light path. The entry- and
exit-points of a multiple-scattering path can then be seen as the two points
of a double slit, which, due to the coherence of the time-reversed paths,
necessarily interfere with each other. The different interference patterns
corresponding to different light paths in the disordered medium have to
be averaged over, which will lead to the shape of the backscattering cone
discussed in Section 1.3 below. What can be seen from this picture is that
in the exact backscattering direction, the averaging will always lead to an
enhancement factor of two.

These principles behind the origin of the backscattering cone will
strongly influence the transport through a random system. Taking the
end points of the counterpropagating paths to coincide somewhere inside
the sample, there will be a two-fold enhancement at this point on such
a closed loop. This in turn leads to a decreased probability of transport
through the system. This effect is what causes Anderson localization of
light (Anderson, 1958), i.e. the loss of diffuse transport due to increasing
disorder. As disorder increases, the probability of forming closed loops
on which intensity is enhanced increases. At a certain critical amount of
disorder, these closed loops start to be macroscopically populated, which
leads to a loss of diffuse transport. This critical amount of disorder has
been estimated using dimensional arguments by Ioffe and Regel (1960) to
be when the mean free path roughly equals the inverse wavenumber, i.e.
when k/* ~ 1. Such a mechanism was first proposed for the transport of
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electrons in metals, where it was found that an increase in disorder can
turn a metal into an insulator (see e.g. Bergmann (1984)).

Historically, the first instances of localization were discussed in the
context of electron transport in metals, and thus localization was thought
to be a quantum effect. Moreover, due to the fact that localization should
always be present in two dimensions (see scaling theory below) and is not
influenced too much by the presence of correlations, these studies were
carried out in thin films. A review of these experiments can be found
in Altshuler and Lee (1988) and Bergmann (1984) and these studies of
localization in lower dimensions have had a big influence on the study
of other quantum effects in low-dimensional electron systems, such as the
quantum Hall effect (Klitzing, Dorda and Pepper, 1980; Laughlin, 1983).

Eventually however, it was realized that the quantum nature of
electrons is not a necessary ingredient for the occurrence of Anderson
localization as, in fact, this is purely a wave effect. Thus, it should also
be possible to observe localization effects with classical waves, such
as light, as was proposed by John (1984) and Anderson (1985). As we
will see below, coherent backscattering, that is, weak localization, was
observed with light shortly thereafter; subsequently, there was a vigorous
programme to also observe signs of strong localization of light, because
the study of photon transport in disordered media has many advantages
over the study of electrons in metals. This is because in the latter case there
are alternatives that may also lead to localization: in the case of electrons,
a random potential can lead to a trapping of particles, which also strongly
affects transport, while not being connected to localization. On the other
hand, electrons also interact with each other via Coulomb interaction, so
that correlations in electron transport are again not necessarily due to
localization effects, but may more likely be explained by electron—electron
interactions. In fact, it can be shown that in the presence of particle
interactions, the effects of localization vanish (Lee and Ramakrishnan,
1985).

However, as we will discuss below, the photonic system is not
completely free either of possible artifacts masking as localization. For
instance, light will be absorbed by materials to a certain extent, which
leads to a loss of energy transport similar to localization. Furthermore,
resonant scattering can lead to a time delay in the scattering process,
which leads to a slowing down of transport, which again may be mistaken
for localization. In Section 3 we will discuss in detail how these possible
artifacts can be circumvented and localization can in fact be observed.

1.3 Theoretical Predictions

As discussed above, the enhanced backscattering from turbid samples,
known as coherent backscattering, is a manifestation of weak localization
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of light. Localization has been studied intensely in electronic systems,
and many of the predictions found there can be applied also to optics.
Here we will discuss the most important predictions, which will also
serve as a guiding line in the quest to observe Anderson localization
of light. Most prominent in these are the predictions of the change in
static transmission (Anderson, 1985; John, 1984) which turned out to be
difficult to observe experimentally due to the presence of absorption in
real samples. The critical prediction for Anderson localization concerns
the fact that there should be a phase transition to a state where diffusion
comes to a halt. This is described by scaling theory (Abrahams, Anderson,
Licciardello and Ramakrishnan, 1979), which can also be investigated by
a self-consistent diagrammatic theory (Vollhardt and Wolfle, 1980). This
version of the theory can also be extended to describe open systems with
absorption, a situation much more suitable for experiments (Skipetrov and
van Tiggelen, 2004, 2006). First of all, however, we will describe the shape
of the backscattering cone as calculated by Akkermans, Wolf and Maynard
(1986) and van der Mark, van Albada and Lagendijk (1988).

1.3.1 The Cone Shape

Given the nature of the backscattering cone due to interference of photons
on time-reversed paths, one can explicitly calculate the shape of the
enhancement as a function of angle. In order to do this, the interference
patterns, corresponding to two counterpropagating paths with end-to-end
distance p, need to be averaged weighted by the probability distribution
of such an end-to-end distance occurring. Like in a double-slit experiment
with slit separation p, each of these interference patterns will contribute
a factor 1 + cos(gp), such that the enhancement above the incoherent
background is simply given by the real part of the Fourier transform of
the end-to-end distance distribution:

alg) = f p(p) - cos(gp) dp. (1)

In the diffusion approximation, this probability distribution can be
calculated (Akkermans, Wolf, Maynard and Maret, 1988; van der Mark,
van Albada and Lagendijk, 1988) to be 1/a(1 — p/y/p* + a?) in the case of
a semi-infinite planar half-space. Here, the length scale a« = 4y1* describes
how the diffuse intensity penetrates the sample as described by the Milne
parameter y and the transport mean free path /*. The parameter y can
be calculated from the radiative transfer equation to be ~0.71 and in the
diffusion approximation is exactly y = 2/3. In the following, we will
always use the value of y = 2/3. This leads to the following expression
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for the backscattering enhancement:

ol
a(q)=f I — ———=—= - cos(gp) dp, (2)
( wﬂﬂz)

which can be solved to give (Akkermans, Wolf and Maynard, 1986;
Akkermans, Wolf, Maynard and Maret, 1988; van der Mark, van Albada
and Lagendijk, 1988):

3/7 (l 1 —exp(—4/3ql*))

= 3
(1+q[*)2 ([l* ( )

al(q)

This gives a cone shape in very good agreement with the experiments
that will be discussed in Section 2. As can be seen from an investigation
of the angle dependence, the cone tip is triangular with an enhancement
of 1 in the exact backscattering direction. The enhancement then falls off
on an angular scale proportional to 1/(kl*); in fact the full width at half
maximum of the curve is given by 0.75/(k/*). Thus the investigation of the
backscattering cone is a very efficient method of determining the turbidity
of a sample as given by 1/1*.

A similar description following diagrammatic theory, where the most
crossed diagrams have to be added up, was given by Tsang and Ishimaru
(1984). The main features of the curve remain the same, however the
different theories use different approximations for the Milne parameter.

1.3.2 Static Transmission

One of the main predictions of Anderson localization in electronic systems
is the transition from a conducting to an insulating state. This of course has
strong implications for the transmission properties of localized and non-
localized samples. For a conducting sample, the transmission is described
by Ohm'’s law, which describes diffusive transport of particles and hence a
decrease of transmission with sample thickness as 1/L. This is also the case
in turbid optical samples, where the transmission in the diffuse regime is
simply given by 7(L) = To/*/L (see e.g. Akkermans and Montambaux
(2006)). In the presence of absorption, this thickness dependence of the
total transmission will change to an exponential decay for thick samples
according to e.g. Genack (1987)

I"/Lq
T(L)=To—

—— (4)
sinh(L/L,)
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where L, = /[*l,/3 is the sample absorption length corresponding to an
attenuation length /, of the material, which describes the absorption of the
light intensity along a random scattering path.

The localization of photons will similarly affect the transmission
properties of a sample. As the diffusion coefficient of light becomes scale
dependent close to the transition to localization, the total transmission
will decrease. Scaling theory of localization, to be discussed below,
predicts that the diffusion coefficient at the transition will decrease as 1/L
(John, 1984, 1985, 1987). This should then be inserted into the expression
for the diffuse transmission of the sample, resulting in a different thickness
dependence T(L) o« 1/L?. Again, this ignores the effects of absorption,
and Berkovits and Kaveh (1987) have calculated the effects of absorption
in the presence of a renormalized diffusion coefficient, finding

T(L) = Tyexp(—1.5L/Ly). (5)

Again, this leads to an exponential decrease of the transmitted intensity
for very thick samples, where, however, the length scale of the exponential
decrease has changed. When photons are fully localized, the transport is
exponentially suppressed, as only the tails of the localized intensity can
leave the sample. Thus Anderson (1985) has predicted the transmission
in the localized case to be given by T(L) = Tyexp(—L/Lj,), where
Lo describes the length scale of localization. As was the case above,
this derivation again does not take into account absorption, and a fuller
description would be given by

I"/Lq
T(L) = Tp—————exp(—L/Lioc). 6
(L) =To g/ P L/ L) (6)

Again, this gives an exponential decrease of the transmitted intensity
for thick samples with an adjusted length scale not solely given by
the absorption length L,. In an experimental investigation of Anderson
localization therefore, static transmission measurements will have to find
an exponential decrease of the transmission that is faster than that given
by absorption alone. This implies that the absorption length must be
determined independently for such an investigation to be able to indicate
localization of light.

1.3.3 Scaling Theory

When studying the thickness dependence of the conductance (i.e. the
transmission), its dependence on disorder has to be taken into account.
Abrahams, Anderson, Licciardello and Ramakrishnan (1979) produced
the first version of such a theory, where they introduce the ‘dimensionless
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conductance’ g as the relevant parameter to study. In electronic systems,
this simply is the measured conductance normalized by the quantum of
conductance, ¢*/h. In optics, the conductance is naturally dimensionless
and can be defined simply via the transmission properties of the sample.
In fact, g can be calculated in three dimensions from the ratio of the
sample volume to that occupied by a multiple scattering path. This
volume of the multiple scattering path is given by i%s, where s is the
length of the path, which in the case of diffusion is s o« L?//*. Thus one
obtains g ~ (W/L)(kW)(kl*), where W is the width of the illumination,
which could also be obtained from the static transmission discussed
above. In the case of a localized sample, the transmission decreases
exponentially with L, which has to be reflected in a renormalization of
the path-lengths in order to give an exponentially decreasing g. The main
ansatz of Abrahams, Anderson, Licciardello and Ramakrishnan (1979),
in treating the problem of the localization transition in the following,
is to suppose that the logarithmic derivative g = d(Ing)/d(In L) can be
expressed as a function of g only.

The transition to a localized state is then given by the criterion that
p changes from a positive value to a negative one. Ohm'’s law as a
function of dimensionality states that the conductance scales as g
LY. Therefore, making a sample larger and larger in low-dimensional
systems will in fact lead to a reduction of the conductance and hence
be associated with localization. Actually Ohm’s law straightforwardly
implies that B = d — 2 for large L (and thus g), such that 4 = 2 is the
lower critical dimension for a transition to localization to occur. In fact,
for low-dimensional systems the waves are always localized (Abrahams,
Anderson, Licciardello and Ramakrishnan, 1979).

Where there is a transition to localization (i.e. in d > 2), more de-
tails about that transition can be obtained by assuming the dependence of
B on g to be linear at the crossing of the null-line. In this case, the scaling
function 8 describes how one arrives from a diffuse conductance to one
which is exponentially suppressed in the localization length. This transi-
tion is a function of the disorder in the system, such that one can describe
it in terms of a diverging length scale of localization at the transition. This
would be given by an exponent v, such that Lj,c o [(g—g.)/g.|7". With the
assumption that close to the transition, # can be approximated by a linear
function in In g, this exponent is simply given by the inverse slope of f
at the transition. In the framework of scaling theory, no exact value can
be given for this exponent, however extrapolating g from its known de-
pendencies at large and small disorder, Abrahams, Anderson, Licciardello
and Ramakrishnan (1979) obtain an upper bound of v < 1. As a matter of
fact, John (1984) has shown that expanding the treatment around the lower
critical dimension, the exponent should be givenby v = 1/2ind =2 + ¢



