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Preface

Among many types of smart materials, responsive photonic bandgap materials,
or more commonly known as responsive photonic crystals, which can change
their color in response to external stimuli, have attracted much attention due to
their important uses in areas such as color displays, biological and chemical
sensors, inks and paints, and many active components in optical devices. The
unique colors originating from the interaction of light with periodically
arranged structures of dielectric materials are often called structural colors,
which are iridescent and metallic, cannot be mimicked by chemical dyes or
pigments, and they are free from photobleaching unlike traditional pigments
or dyes. Many interesting applications have been proposed for responsive
photonic crystal structures. For example, they may be used as optical switches
for full automation of optical circuits when significant improvements towards
the quality of colloidal crystals and their response time are realized. Military
vehicles covered with such materials may be able to dynamically change their
colors and patterns to match their surroundings. Such materials might also be
embedded in banknotes or other Security documents for anti-counterfeiting
purposes. The hidden information cannot be revealed until an external stimulus
such as a pressure or temperature change is applied. The photonic effect can
also be used as a mechanism to develop chemical and biological sensors for
detecting target analytes by outputting optical signals. These types of crystals
may also find great use as active color units in the fabrication of flexible display
media, including both active video displays and rewritable paper that can be
reused many times.

Compared to photonic crystals prepared by microfabrication methods,
self-assembled photonic crystals, in particular colloidal crystals, can be
produced at much lower costs and with higher efficiencies owing to the parallel
nature of the self-assembly processes. It is also more convenient to modify the
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vi Preface

building blocks before or after the formation of crystal structures to enable
responsiveness to a given stimulus. As a result, the majority of research on
responsive photonic nanostructures has been focused on constructing the
photonic crystal structures and incorporating stimulus-responsive materials
into the self-assembled photonic crystal structures. In principle, the stimulus
can be any means that can effectively induce changes in the refractive indices of
the building blocks or the surrounding matrix, and changes in the lattice
constants and/or spatial symmetry of the crystalline arrays. While various
responsive mechanisms have been developed, such as mechanical stretching,
solvent swelling, and temperature-dependent phase change, the research
activities in the field have been focused on broadening the tunability of the
photonic properties, enhancing the response rate to the external stimuli,
improving the reversibility, and integrating into existing photonic devices.
This book highlights several recent areas of progress in the self-assembled
responsive photonic nanostructures based on a number of different tuning
mechanisms. Among all photonic crystal structures, one-dimensional Bragg
reflectors that consist of alternative multilayers of two materials with different
dielectric constants are regarded as the simplest type of photonic nano-
structures. Calvo and Miguez first discuss recent progresses in the development
of such materials for potential applications in sensing owning to their ability to
respond to changes in the surrounding environment with a modification of their
optical properties, generally caused by a variation of either their refractive
index, the thickness of the constituent layers, or both. Self-assembled opals of
close-packed colloidal crystals from monodisperse colloidal particles have
predominantly served as the starting frameworks for constructing responsive
photonic nanostructures. Stimulus-responsive materials can be incorporated
into the periodic structures either as the initial building blocks or as the
surrounding matrix so that the photonic properties can be tuned. Such colloidal
crystals may also be used as the templates to fabricate inverse opals. Various
versions of tunable opals and inverse opals have been developed that can
respond to a wide range of external stimuli such as mechanical stretching,
humidity, light, and temperature change, as reviewed separately by Fudouzi,
Gu and Stein and coworkers. Since the opal structures themselves are relatively
weak due to the fragile contact points between spheres within the structure,
many structurally deformable photonic structures have been made from
close-packed or nonclose-packed colloidal crystal arrays encapsulated within a
hydrogel or polymer matrix that fills the void space surrounding the colloidal
crystal, as discussed by Kanai and Takeoka. Through the infiltration of a defect
layer of liquid crystals into photonic structures, the optical properties can be
reversely manipulated by the external electric fields to realize the electroch-
romatic effect. The relevant research has been summarized by Ozaki and
coworkers. Yin and coworkers also highlight recently developed magnetically
responsive photonic nanostructures with widely, rapidly and reversely tunable
structural colors across the entire visible and near-IR range, which utilize the
magnetic field as the convenient stimulus to tune the optical properties by
affecting the lattice constant, the orientation, and the structures of the colloidal
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assemblies. We hope this book will serve as a useful reference to researchers
interested in smart nanoscale optical materials, in particular, responsive
photonic nanostructures.

Yadong Yin
University of California, Riverside
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CHAPTER 1

Responsive Bragg Reflectors

MAURICIO E. CALVO AND HERNAN MIGUEZ*

Multifunctional Optical Materials Group, Instituto de Ciencia de Materiales
de Sevilla, Consejo Superior de Investigaciones Cientificas-Universidad de
Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain

*Email: h.miguez@csic.es

1.1 Introduction

Multilayers have been a common subject of study of materials and optical
scientists for many decades. The possibility to attain color from the stacking of
films of transparent materials and, furthermore, the fine control over light
transmission and reflection they offer, have attracted the attention of both
scientists and technologists. Indeed, the industrial development of these
materials has led to the realization of a myriad of passive optical elements that
are commonly found in all kind of spectrophotometers or optical char-
acterization setups. From the manufacturing perspective, most efforts have
been put in the preparation of thin films as stable as possible against changes in
the surrounding environment. This has been mainly motivated by their use as
filters of a range of selected optical frequencies, which would not be constant if
their structure varies in the presence of moisture or as a consequence of
temperature variations. This feature implied that the constituent layers could
not present accessible porosity in which condensation of vapor could take
place. Also, unless pore sizes are in the nanoscale range, the presence of voids
could easily lead to diffuse scattering that will deteriorate its optical quality.
There is currently a boost in the development of film deposition techniques
that permit a strict control to be achieved over porosity at the mesoscale, thus
preventing diffuse optical scattering phenomena. While porosity in general
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2 Chapter 1

endows the film with the potential of hosting guest compounds in the interstitial
space, such as potential functional groups or analytes transported from gas or
liquid phase, fine tuning of the pore-size distribution yields command over the
kinetics of vapor sorption in the layers or molecular-size-selective detection.
Actually, many of the porous materials that can be prepared as thin films have
already been incorporated in a multilayer structure with the aim of taking
advantage of the interplay between the responsive properties that porosity
provides. The same aim has been reached by employing a different approach
based on the multilayer integration of polymeric films whose thickness and
refractive-index change as a function of the species present in their
surroundings. In this chapter we will review the main properties that make all
these layers interesting building blocks to build responsive optical materials as
well as the main synthetic procedures and representative applications that are
being explored in this emerging field.

1.2 Fundamentals: Optical Properties of Multilayers

The optical thickness of a film is defined as the product of its geometrical
thickness times its refractive index. This parameter determines the range of
wavelengths for which optical interference effects are observed when a white
light beam impinges on the slab surface. Both transmitted and reflected light
will present spectral intensity fluctuations whose frequency will depend on the
value of the optical thickness relative to the incident wavelength. For a
dielectric film, reflectance maxima are expected when half an integer number of
wavelengths, respectively, “fit” in the optical thickness of the film. The intensity
of these maxima depends on the dielectric constant contrast between the film
and the surrounding media, which typically are the air above the film and the
substrate supporting it. Optical interferometry of dense thin films is commonly
put into practice to prepare antireflection coatings to reduce light insertion
losses in sunglasses or devices such as solar cells. For the case of porous films,
the possibility was soon realized of making use of the sensitivity of the pattern
of lobes observed in transmittance and reflectance spectra to the refractive
index of the film for detection and recognition of specific targeted compounds,
provided adequate functionalization of the pore walls was achieved. In fact, the
first optically responsive films were developed by anchoring antigens to the
inner walls of porous silicon films and exposing them to the corresponding
antibodies, which gave rise to an increase of the average refractive index of the
film that resulted in a redshift of the monitored optical features. The group of
Sailor largely contributed in the 1990s and afterwards to the development of
porous silicon structures for sensing of different sorts of species based on this
approach. An example of this responsive behavior of a porous silicon film is
shown in Figure 1.1. Today, there exist many different types of materials that
could be shaped as porous films and thus employed as the basis for a responsive
interferometric sensing device.

In the last decade, the possibility to stack porous films of different
composition and structure preserving the accessibility of the network of



