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Preface

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and one of the
most feared diseases due to the manner in which it robs its victims of their memories.
Frontotemporal dementia (FTD) is perhaps somewhat less well known among the public,
but it is also a prominent cause of dementia that produces devastating changes in personal-
ity and a decline in interpersonal interactions. The two conditions are often considered
siblings, for while they are distinct disorders targeting different brain regions and produc-
ing unique clinical symptoms, there is some overlap in their molecular neuropathology
(such as the presence of inclusions containing the microtubule-associated protein tau) and
genetic risk factors (such as apolipoprotein E).

Both conditions were originally described around the turn of the last century but
languished without significant research effort for decades. In the 1980s, breakthroughs in
pathobiochemistry and genetics led to identification of molecular players in these diseases,
enabling a very fruitful period of biomedical research that continues to intensify. Recent
years have seen a growing interest in the neurobiology of neuronal dysfunction in these
conditions with increasing application of complex techniques from molecular and cellular
neuroscience. Thus, the diversity and sophistication of methods and protocols used for
research on AD and FTD continue to grow. It is not uncommon, and actually is expected
in many journals, to see publications that include techniques as divergent in their required
expertise as behavior, electrophysiology, confocal microscopy, and hardcore biochemistry.
Consequently, projects in AD and FTD research may require individual investigators to
branch out into complex approaches for which they have not received abundant hands-on
training. The goal of this book is to make many of those techniques more accessible.

The book is intended for scientists of all kinds studying AD and FTD. Realizing that
many of the approaches will be foreign to some users, the protocols are presented in a
step-by-step fashion with complete materials lists and user notes describing the “real story”
about how to make the method work.

The book begins with an overview of the two diseases and modern approaches to
research on them. Many of the molecules associated with AD and FTD are notoriously
difficult to work with, so the first half of the book (Chaps.2-10) details specialized proto-
cols for working with amyloid-B peptide, tau, and apolipoprotein E. The second part
(Chaps. 11-18) focuses on experimental systems for studying AD and FTD, including cell
and animal models, and outcome measures that can be used to assess neuronal function in
these systems.

Birmingham AL, USA Evrik D. Roberson
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Chapter 1

Contemporary Approaches to Alzheimer’s Disease
and Frontotemporal Dementia

Erik D. Roberson

Abstract

Alzheimer’s disease and frontotemporal dementia are two of the most common neurodegenerative
dementias. Here, we review the clinical presentation, genetic causes, typical neuropathology, and current
treatments for these disorders. We then review molecules involved in their pathogenesis and protocols for
working with these species and conclude with a discussion of experimental systems and outcome mea-
sures for studying these disorders.

Key words: Dementia, Mild cognitive impairment, Memory, Personality change, Disinhibition,
Aging, Methods, Protocols, AB, B-Amyloid, Tau, Apolipoprotein E, Progranulin, TDP-43

1. Alzheimer’s
Disease

Alzheimer’s disease (AD) is the most common neurodegenerative
disease. Age is the strongest risk factor, and advances in health
care that enable more people to live into their 80s and 90s have
led to a steady increase in the incidence of AD (1).

Memory impairment is the earliest and most prominent
symptom of AD. The typical patient might first notice mild prob-
lems with episodic memory, such as repeating themselves in con-
versation or forgetting recent events. Initially, the symptoms do
not cause significant functional impairment, and at this stage the
patient is considered to have amnestic mild cognitive impairment
(aMCI). As the disease and symptoms worsen, functional impair-
ment in daily activities becomes manifest, such as with problems
balancing the checkbook, preparing meals, or managing medica-
tions. At this point, unless another likely cause is identified, the
patient meets criteria for a clinical diagnosis of probable AD.

Erik D. Roberson (ed.), Alzheimer’s Disease and Frontotemporal Dementia, Methods in Molecular Biology, vol. 670,
DOI 10.1007/978-1-60761-744-0_1, © Springer Science+Business Media, LLC 2011
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2 Roberson

The disease is inexorably progressive and fatal, with median survival
about 12 years from onset of symptoms (2). Definite diagnosis is
made neuropathologically, based on the presence of the pathologi-
cal hallmarks of AD: amyloid plaques and neurofibrillary tangles.

Three genes have been identified as causes of rare, autosomal
dominant, early onset AD. APP, encoding amyloid precursor
protein, was the first to be identified (3), followed by PSENI and
PSEN2, encoding presenilin 1 and 2 (4-6). All three genes are
involved in the production of amyloid-f peptide (AB). APP is the
precursor protein from which A is generated, and the presenilins
are components of the y-secretase enzyme complex that cleaves
AB from APP (7, 8).

Current treatments for AD have only modest benefits (9).
Around the time of diagnosis, one of three widely available cho-
linesterase inhibitors is often used to boost cholinergic function.
In the middle stages of the disease, these agents are often paired
with memantine, which prevents overstimulation of NMDA-type
glutamate receptors. Many other agents specifically targeting
the molecular processes involved in pathogenesis (and developed
using some of the techniques described in his volume) are
currently in clinical trials, and there is hope that some of these
agents will provide more dramatic therapeutic benefit (10).

2. Frontotemporal
Dementia

Frontotemporal dementia (FTD) is a term variably used to refer
cither to a specific clinical syndrome (more specifically called
“behavioral variant FTD” or bvFTD) or to a family of neurode-
generative conditions that includes bvFTD and several related
disorders (a group also called “frontotemporal lobar degenera-
tion” or FTLD) (11, 12).

The clinical disorders falling under the umbrella of FTLD
include bvFTD, semantic dementia, progressive nonfluent apha-
sia, and FTD with motor neuron disease (FTD-MND) (13). The
bvFTD is characterized by personality changes and loss of insight,
emotion, and social interactions (14). In semantic dementia,
patients develop a fluent aphasia with loss of semantic knowledge
about objects (15). Patients with progressive nonfluent aphasia
exhibit progressive deterioration in expressive language with
agrammatic, effortful speech (16). FTD-MND produces a
combination of behavioral symptoms and frontal executive
dysfunction in combination with weakness due to motor neuron
degeneration (17).

Just as the clinical syndromes associated with FTD are more
diverse than in AD, the neuropathology of FTD is also more
complex (18). About half of the cases have some form of
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tau-positive inclusions, while most of the others have inclusions
composed of ubiquitinated TAR DNA-binding protein of 43 kDa
(TDP-43). A small percentage have inclusions of the “fused in
sarcoma” (FUS) gene product (19).

Families in which FTD is inherited in an autosomal dominant
manner have also provided important clues to the molecular
pathogenesis of the disease (20). Roughly 5% of all FTD cases are
due to mutations in the MAPT gene encoding tau; all of these
cases have tau pathology (21-24). Roughly 5% of FTD cases har-
bor mutation in the GRN gene encoding progranulin (25-27);
these cases display TDP-43 pathology (28). Other, much less
common genetic causes of FTD include mutations in CHMP2B
(29, 30) or VCP (31, 32).

There are no FDA-approved treatments for FTD, although
selective serotonin reuptake inhibitors are often used (33, 34).
The lack of effective treatments for FTD underlines the need for
intense research to develop new therapeutic strategies for targeting
this disorder.

3. Molecules
Involved in AD
and FTD

As described in Subheadings 1 and 2, the identification of
proteins accumulating in inclusion bodies and of genes causing
inherited disease has greatly advanced our understanding of the
molecular basis of AD and FTD.

AB is a 40- or 42-amino acid fragment of APP, which has
normal functions in regulating synaptic transmission (35, 36),
but which accumulates to toxic levels in AD. One of the most
important properties of AB is its ability to aggregate into multim-
ers, including dimers and trimers (37, 38), dodecamers (39),
larger oligomers (40), protofibrils, and the long fibrils that com-
pose amyloid plaques. The size of an AP aggregate is a critical
determinant of its toxicity (41, 42). Unfortunately, the diverse
array of possible aggregation states makes working with Af very
challenging. In Chapter 2, Mary Jo LaDu and colleagues present
protocols for preparing synthetic AR monomers, oligomers, and
fibrils. In Chapter 3, Dominic Walsh, Dennis Selkoe, and col-
leagues describe purification of small AB oligomers (dimers and
trimers) from cultured cells and from CSF and brain tissue. In
Chapter 4, Sylvain Lesné and colleagues describe the isolation of
AB*56, a larger oligomer shown to correlate with cognitive defi-
cits in a mouse model of AD (39). In Chapter 5, Justin Legleiter
describes protocols for using atomic force microscopy to evaluate
the aggregation state of Ap.

AR is not the only important product generated from its pre-
cursor, APP. The initial step in the production of A from APP is
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the cleavage of the extracellular portion of AP, which generates car-
boxy-terminal fragments (CTFs). The second step is the cleavage
of the CTFs by y-secretase, which produces AP and the APP intra-
cellular domain (AICD). Thus, production of A is coupled to
generation of other biologically active species, and independent
assays for each of these species can aid in the interpretation of data
from experiments in which multiple APP fragments are present.
In Chapter 6, Luke Esposito describes a method for quantifying
CTFs and for examining different sized AP fragments using acid
urea gels. And in Chapter 7, Sanjay Pimplikar and colleagues
describe a protocol for detecting AICD in cell lysates.

The microtubule-associated protein tau, a component of the
cytoskeleton, aggregates into neurofibrillary tangles, the other
pathological hallmark of AD (43—46). Tau is also the most com-
mon genetic cause of FTD (20) and accumulates in about half of
all FTD cases. One important aspect of tau biology is its level of
expression; reducing tau expression was shown to be beneficial in
mouse models of both AD and FTD (47, 48). In Chapter 8,
Chad Dickey et al. describe an in-cell western assay that they have
used to screen for regulators of tau expression (49). Another
important aspect of tau is its ability to aggregate; in Chapter 9,
Gail Johnson and colleagues describe a method they have devel-
oped using split GFP technology to quantitatively measure the
effect of various agents on tau aggregation (50).

ApoE is the main genetic risk factor for AD; relative to the
more common €3 allele, the more pathologic €4 allele increases
AD risk several-fold (51). ApoE also has an influence on the evolu-
tion of FTD (52). As a lipoprotein, the biochemistry of apoE is
quite sophisticated. In Chapter 10, Karl Weisgraber and colleagues
describe a biochemical purification protocol they have developed
to generate different apoE isoforms for use in experiments.

4. Experimental
Systems for AD
and FTD

A variety of experimental systems can be used to study these
diseases. Many questions related to the effects of AP can be
addressed using primary cultured neurons and a protocol for
assessing the toxic effects of AR on cultured cells is presented by
Adrianna Ferriera and colleagues in Chapter 11. Viral vectors
have also proved an important tool for modeling neurodegenera-
tive diseases, and in Chapter 12, Li Gan and colleagues detail a
method for using lentivirus in the central nervous system. And
of course, mouse models are a mainstay of research on these
diseases (53). Given the myriad models available, the choice of
which to use in a given situation can be dizzying, and in Chapter
13, Jeannie Chin provides a summary of important features of
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