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INTRODUCTION

Mankind, over a period of many decades, has brought about the mechanization
of production. It can now be said that most processes requiring great physical
strength are carried out by machines, or at least, that this is technically feasible.
It is only a matter of investment and economics whether or not this possibility
is actually realized. This means that the process of mechanization has, essentially,
been completed. Naturally, this process was backed by the necessary theoretical
prerequisites. The theoretical background to the processes concerned had to be
known and the physical relationships had to be formulated mathematically.
Mechanization in chemical industries gave birth to modern large-scale technolo-
gies. At the same time, there was a strong movement towards continuous opera-
tion. Correspondingly, the relationships mentioned above dealt primarily with
steady-state processes. These relationships are the results of cooperative efforts
by the experts in the interrelated fields: technology, unit operations, mechanics
and mathematics. However, due to the inherent nature of the chemical industry,
these relationships have never reached the depth achieved in mechanics or elec-
tronics. Refinement of the existing mathematical treatment of chemical industries
is an intense, continuous activity.

Since human physical strength no longer places a limit on technological in-
novations, man has been able to harness far more powerful forces. Vast stores
of energy were released, while plant sizes and capacities were increased causing
their value to soar as well. However, the risks associated with these processes
increased enormously, and temporary carelessness could cause huge losses.
The burden of responsibility placed on human control increased beyond reasonable
limits. This — inevitably — led to the point when man had to hand over control
to more alert systems and this transfer was, to a great extent, in his best interest.

When even control functions were assigned to machines, a new age, of auto-
matic control and the automation of equipment began. In the chemical industries
this trend has a history of some thirty years, in other industries, perhaps, rather
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longer. Obviously, this activity called for the clarification of theoretical relation-
ships as well, and since the main point here was the reinstitution of the steady-
state operation of a disturbed process, the mathematical descriptions of non-
steady-state phenomena had to be examined. Unfortunately, very little has been
done in the field of mathematical analysis of non-steady-state operation units,
i.e. process dynamics has a very short history. Few publications deal with this
topic and even these lack a common systematic theoretical foundation. Further-
more, most of them, in their present form, are unsuitable for automation design
purposes. This results in the undesirable, but nevertheless existing, situation that
control systems are designed — at best — according to qualitative considerations
and it is left to the operating personnel, to experience (or suffer) the performance
of their system. On the other hand, if one looks at, for example, the mechan-
ical engineering industries, extremely accurate control systems closely following
predetermined patterns are to be seen. The explanation is fairly simple, the mathe-
matical analysis of these processes can be carried out very precisely.

Before analysing the causes of the present situation in chemical industry, let
_us quote — as our motto — D.P.Campbell, the “father’” of chemical process
dynamics: ““As long as the designers of industrial process control systems con-
centrate upon instruments and controllers and fail to recognize the plant as the
central and most fundamental issue, we cannot hope for much progress. In
process control, knowledge of process behaviour comes first™ [1].

In our view, the present situation can be traced back to the following causes.

At the beginning chemical engineers did not consider process automation ‘‘their
business”’. Automation was thought to be the field of specialists trained as electrical
or mechanical engineers.

There is no denying that this isolation of the subject, at least at the beginning,
was also to be found in mechanical engineering industries. However it should
not be forgotten that here process behaviours had to be described by analysing
essentially mechanical and electrical relationships. This, electrical and mechanical
engineers (based solely on their basic training) were generally able to do. Thus
the necessary process dynamical knowledge was available after all. However,
such specialists could not have been expected to knocw chemical engineering to
the same depth. In fact, it would be hard to find a field more alien to them.
Therefore, close cooperation between chemical engineers and process dynamics
experts is essential, and meaningful results can only be expected when this is
present.

Once this cooperation started, the signs of development did appear. However,
we have found that several obstacles remained unchanged. One of them is the
fact that chemical process dynamics experts are not really concerned to give their
studies a common basis. Therefore, different authors describe the very same
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operation unit by means of totally dissimilar equations, both in character and
structure. Then again, operation units are frequently discussed on the basis of
the particular technological process, not recognizing the fact that quite often
even completely different operation units can be described by rather similar
equations. The other fact is that, figuratively speaking, chemical engineers and
process control experts speak different languages. This, in itself, is quite evident,
but the problem is, that the gulf between them is so great, that they do not even
understand each other any more. Process control theory has developed its vast
armoury of detailed mathematical treatments. Using these devices — if the dynamic
mathematical model of the process is known — process control theory can solve
quite advanced design problems. However, only those mathematical relationships
which can be accommodated by the existing mathematical arsenal can be used.
This means that in describing a particular process, the chemical engineer has to
use the mathematical tools of process dynamics, i.e. he is compelled to learn
their language. We are convinced that most control systems installed up to now
would not have been necessary if the operation unit in question had been designed
with process dynamics in mind.

It would be a gross immcdesty to state that a panacea is presented in this
book for all the problems enumerated above and that engineers concerned with
process control will find here a ready-made answer for all their grievances. More
fittingly, this book represents one of the first steps towards bringing together
experts of the two respective fields.

This book was written with a double purpose in mind: on the one hand, an
attempt was made to create a common technical language and introduce terms
well understood in both fields, and on the other hand, to structure and order
process dynamics itself. The latter goal can be achieved by explaining the funda-
mentals of process control to the chemical engineers concerned. Also, the
fundamental equation set used to describe chemical operation units is briefly
shown far the sake of non-chemist readers.

As far as possible, relationships are presented as transfer or frequency-func-
tions. In our view, this is the form most readily compatible with the mathematical
devices of process control. No special emphasis was placed on transient (time-
dependent) behaviour. Although they are quite easily visualized, in our view
they are not worth the time and effort required to obtain them, at least compared
with their effective use in process control. At the same time, unlike several
other authors, we tried to exercise some restraint and attempted not to overburden
the reader with flowsheets and electrical analogy circuits. As far as a single
operation unit and not a system composed thereof is concerned, we do not think
that very much more information could be extracted from a flowsheet than from
an appropriately formulated equation.



As for electric analogies, they are only used occasionally and even then only
to demonstrate certain principles. We are ready to go a long way to defend our
view that any formula is of value only as long as the engineer can substitute the
appropriate quantities into it. From this viewpoint an analogy using coefficients
which cannot be determined leads nowhere.

Unfortunately, this attitude does occasionally necessitate certain compromises
relating to both the content and the mode of presentation, namely:

1. Relationships are necessarily attempted to be obtained in the form of linear
equations. This is because Laplace transformation, the mathematical device
used to obtain transfer functions, can only be applied in the case of constant
coefficient linear differential equations. This limitation is not as severe as it
would appear at first glance, for in practice one is generally concerned with small
changes, small periodic deviations from a steady-state value. These changes,
moreover, can adequately be described by linear equations. Further, process
control theory, by definition, obtains the transfer function from the Laplace
transform of the differential equation under zero initial conditions. This means
that the initial condition, i.e. the steady-state value of the characteristic variable
in question, is arbitrarily put equal to zero. In the final analysis, chemical
engineering is expected to determine its value. In the present treatment this value
occurs, at most, as a constant coefficient.

2. Neither the mathematical description of multivariable, multiparameter
systems, nor operation unit behaviour under stochastic signals are dealt with
here. We are fully aware of the fact that computerized process control and
dynamical optimization problems will soon raise these issues as well. There is
only a relatively loose connection between these problems and the true internal
relationships of operation units, so there is no real organic unity between these
two fields and the rest of the present book.

Throughout this book we will attempt to put forth only such equations charac-
terizing operation unit behaviour which can really be used in practice. To make
the relationships work, all physical quantities are given in the SI system. Occa-
sional numerical coefficients are taken care of in the final form of the equations.
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SYMBOLS

a dB attenuation

a coefficient

a:jmzs“‘ coeflicient of thermal diffusivity

a, m?sp"1 coefticient of turbulent thermal diffusivity
A m? area

A; m? area of transfer

b coefficient

B m?st volume current

¢ kgm™3 concentration

¢, kJ kg™ K71 specific heat at constant pressure

C m s? capacity

d m diameter

d, m characteristic length of column filling
D m?s™1 coefficient of axial turbulent diffusion (dispersion)
2 m?s! coefficient of diffusion

D] determinant

e base of natural logarithm

E coefficient

E symbol of function

fst frequency

f function

F transfer function

g weight function (pulse response)
gms? gravitation constant

G kgm™2s71! specific gas loading

G kmole s molar current of vapour

G klm=3s™1 intensity of heat source



h= = characteristic lengtht of dispersion
h m level

H m length of chemical process unit
AH kJ kgt enthalpy of evaporation, enthalpy of reaction
I=1; 25 o constant

I kjs™?! heat current

j=V=1

j current density (in general)

k constant

k constant of partition

k reaction constant

k, m? equivalent cross section of valve
K constant

K transfer coefficient

L kgm~2s71 specific liquid loading

L kmole s™! molar current of liquid

& Laplace-operator

m Henry constant (dimensionless)
m kg mass

m kgs™! mass current

M kg kmole™! molar mass

n number of process units

N kmole number of moles

p coefficient

P Nm~—2=Pa pressure

q coefficient

q:% parameter of the characteristic function of valve
rkgm—3s7t intensity of component source

r reflexion coefficient

R kJkmole 'K ™! gas constant

R reflux coefficient

5 82 Laplace variable

ts time

is residence time

T s time constant

U step function

v ms™! velocity of convective current
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