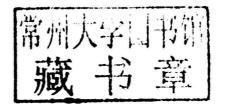

Edited by Peter Fratzl, John W C Dunlop and Richard Weinkamer

Materials Design Inspired by Nature

Function through Inner Architecture


RSCPublishing

Materials Design Inspired by Nature Function Through Inner Architecture

Edited by

Peter Fratzl, John W. C. Dunlop and Richard Weinkamer

Max Planck Institute of Colloids and Interfaces, Germany Email: fratzl@mpikg.mpg.de; dunlop@mpikg.mpg.de; Richard.weinkamer@mpikg.mpg.de

RSC Smart Materials No. 4

ISBN: 978-1-84973-553-7

ISSN: 2046-0066

A catalogue record for this book is available from the British Library

© The Royal Society of Chemistry 2013

All rights reserved

Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page.

The RSC is not responsible for individual opinions expressed in this work.

Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

Registered Charity Number 207890

For further information see our web site at www.rsc.org

Printed and bound in the United Kingdom by CPI Group (UK) Ltd, Croydon, CR0 4YY

Materials Design Inspired by Nature Function Through Inner Architecture

RSC Smart Materials

Series Editor:

Hans-Jörg Schneider, Saarland University, Germany Mohsen Shahinpoor, University of Maine, USA

Titles in this Series:

- 1: Janus Particle Synthesis, Self-Assembly and Applications
- 2: Smart Materials for Drug Delivery: Volume 1
- 3: Smart Materials for Drug Delivery: Volume 2
- 4: Materials Design Inspired by Nature: Function Through Inner Architecture

How to obtain future titles on publication:

A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:

Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247

Email: booksales@rsc.org

Visit our website at www.rsc.org/books

Preface

Biological materials are omnipresent in the bodies of plants, animals and humans. They allow cells to function, eyes to capture and interpret light, plants to stand up to the light, and animals to move or fly. This multitude of solutions has always inspired mankind to make materials and devices which simplify our daily lives. Biological materials have many features which differentiate them from the usual engineering materials. First, they consist of relatively few constituent elements, mainly proteins such as silk or collagen, polysaccharides such as cellulose or chitin, and a few minerals. Nevertheless, nature has evolved based on comparatively poor base substances – a range of materials with remarkable functional properties. The key is a complex, often hierarchical structuring which results from the growth process of natural materials, where components are synthesized and assembled by the organism according to a recipe stored in the genes. This multi-scale internal architecture offers a number of advantages. It allows, for example, the adaptation to conflicting requirements by separately tuning the properties at different length scales to better meet those requirements. Another feature is an enhanced ability for lightweight construction by an adapted internal architecture (such as struts, plates, fibres) at different length scales.

However, in order to extract useful ideas for the development of bio-inspired engineering, it is not sufficient to describe only the structural hierarchy of natural materials. It is essential to also take into account the full variety of boundary conditions imposed by habitat, food or potential predators, which all influence the adaptation of natural tissues, sometimes in conflicting ways. This makes it improbable that any natural material will be optimized for one function only, given that organisms experience many challenges simultaneously. Moreover, genes carry a long history of evolution and it is not obvious that the adaptation to a particular environmental condition (for example to hard food, to low temperatures, to different levels of oxygen or

RSC Smart Materials No. 4

Materials Design Inspired by Nature: Function through Inner Architecture Edited by Peter Fratzl, John W. C. Dunlop and Richard Weinkamer

© The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

vi Preface

sunlight) will yield an optimal solution, given that the starting point is imposed by the conditions of the past. The consequence is that structures found in an organism may not be optimal for any desired engineering goal but just a compromise between historical baggage and adaptation to conflicting requirements.

Likewise, engineering developments are in most cases nothing else than compromises between other sets of conflicting requirements, such as production cost, consumer acceptance, as well as environmental and health implications. Hence, the difficulty in translating natural solutions to engineering applications is that – even when the same technical problem needs to be solved – the associated conflicting requirements may be radically different.

With this in mind, a group of scientists joined forces in 2009 to explore the possibilities of designing multifunctional materials based on hierarchical structuring. This effort is supported by the German Research Foundation (DFG) in the form of a priority programme (SPP1420; http://spp1420.mpikg.mpg.de/). This programme addresses a variety of challenges, first by characterizing natural hierarchical materials to enlarge the 'idea park' of hierarchical structures and to discover and model new principles for materials design, and then to develop manufacturing technologies for materials solutions based on hierarchical structures. We are explicitly mentioning this priority programme since many of the chapters of this book were contributed by partners and friends of the SPP1420 consortium.

In the first chapter, Yves Bréchet gives an overview over a class of engineering materials which he calls 'architectured materials'. This chapter sets the tone by looking into the rationale of (multi-scale) structuring in order to achieve uncommon property combinations and to eventually fill gaps in material—property space. The chapter considers acoustic absorbers and radiant burners as examples and also analyses the potential of bio-inspiration in developing architectured materials.

Collagen, bone and their hierarchical structure are at the centre of Chapters 2–5. First, Willie, Duda and Weinkamer describe the dynamic structure of living bone (Chapter 2). A particular feature of this material (and as many other tissues in our body) is that bone is continuously renewed by cells that resorb and others that synthesize it. This process is also central for the adaptation of the structure to the applied loads (Wolff's law). Chapter 3 and 4 then introduce modern techniques for the characterization of hierarchical biomaterials. First, Wagermaier and co-authors describe position-resolved X-ray scattering, a powerful tool to studies hierarchical structures in bone and other biological materials. Then Dey and Sommerdijk introduce advanced transmission electron microscopy techniques using the example of bio-inspired mineralization, a process which mimics the mineral deposition in the collagenous bone matrix. Giraud-Guille and co-authors describe natural and artificial materials based on collagen matrices (Chapter 5). Such materials may find applications in tissue engineering and as medical implant materials.

Plants and the plant cell wall are the topic of Chapters 6 and 7. First, the hierarchical structure and its role on the mechanics of plants is introduced by

Preface vii

Ingo Burgert followed by the use of plants in bio-inspired systems. Then, in Chapter 7, Gierlinger and co-authors give an introduction to Raman spectroscopic imaging, which has emerged quite recently as a useful tool for the characterization of biological fibrous materials structured over several length scales. Beside plant tissues, the investigation of collagen and bone is covered.

Chitin-based materials are covered in Chapters 8 and 9, which concentrate on the cuticle of arthropods. Paris and co-authors describe the multi-scale structure and the mechanical properties of the crustacean carapace. Friak and co-authors then introduce the methodology of multi-scale modelling for the theoretical description of this type of materials. The structuring of chitin-based materials in the submicron range also allows light to be manipulated and iridescent colours or light reflectors to be engineered. In Chapter 10, Andrew Parker describes these photonic structures in beetles and butterflies and shows how related concepts can be turned into useful optical devices.

Carillo, Vach and Faivre, in Chapter 11, discuss the structure, arrangement and function of magnetic nanoparticles used by magnetotactic bacteria to navigate in Earth's magnetic field. Silk and other protein materials are reviewed by Smith and Scheibel in Chapter 12.

Hierarchically structured surfaces can be both anti-adhesive or adhesive, depending on the details of the structure and the interactions. These principles are used by plants and insects to regulate their interaction but also by relatively large animals such as the gecko to run on the ceiling. Elena and Stanislav Gorb provide an overview about anti-adhesive surfaces in plants and their effect on insect locomotion in Chapter 13 and how these principles may be used for bio-inspired applications. In Chapter 14, Kroner and Arzt review adhesive surfaces.

Most biological materials are composites, either of different types of macromolecular materials, usually based on protein or carbohydrates or they are polymers reinforced by hard mineral particles. Studart and co-authors introduce bio-inspired structural principles for advanced composites in Chapter 15.

Finally, Chapter 16 is devoted to an interesting biological property: the ability of some organs or biological materials to heal. This occurs with skin and bone in our body but also exists in plants. Speck and co-authors show in this last chapter how concepts of self-healing derived from biological organisms can be understood, developed and pushed all the way to a technical product.

In general, the chapters in this book address the problem of bio-inspired materials in three different ways: first by describing the structure and function of hierarchical biological materials (Chapters 2, 5, 6, 8, 10–12). Then, several chapters introduce state-of-the-art methodology needed for the characterization (Chapters 3, 4, 7) and the theoretical modelling (Chapter 9) of multi-scale structures. Finally, in the remaining chapters (1, 5, 13–16), the focus is on using structural principles recognized in biological materials for their translation into materials for diverse engineering applications.

Bio-inspired materials research is a wide and dynamically evolving field. The present book focuses on a special aspect, namely the use of multi-scale structuring to improve mostly mechanical, but also other properties and to approach a true multi-functionality of these materials, including adhesion,

viii Preface

optical and magnetic properties. The authors are biologists, chemists, physicists and engineers and their language varies somewhat according to their fields. Nonetheless, the book should be accessible to readers from all these disciplines.

We hope that this book will enable engineers to become inspired to use multiscale structuring instead of, or in addition to, changing the composition of their materials. We also hope that biologists will find some pleasure in learning how their science is now starting to influence engineering.

Peter Fratzl, Richard Weinkamer and John Dunlop

Contents

Chapter 1	Architectured Materials: An Alternative to Microstructure Control for Structural Materials Design? A Possible Playground for Bio-inspiration?			1
	Yves J. M. Bréchet			
	1.1	Introd	luction: Materials, Structure and Between	1
	1.2		ples of Engineering Architectured Materials	5
			An Acoustic Absorber	
		1.2.2	A Radiant Burner	5 7
	1.3	The C	ase for Bio-inspired Architectured Materials	9
	1.4		ples of Bio-inspiration	10
			Challenge 1: Combine Strength, Ductility and	
			Toughness	11
		1.4.2		
			which can be Stamped and still Absorb	
			Vibrations, while being Easy to Weld	11
		1.4.3		
			Material that is both Flexible and Damage	
			Tolerant	12
	1.5	The St	tumbling Block: Processes	13
	1.6	Conclu		15
	Acknowledgement		15	
	References			15
Chanton 2	Done	Ctunat	weel Adoptotion and Walgra I am	177
Chapter 2	Bone Structural Adaptation and Wolff's Law Bettina Willie, Georg N. Duda and Richard Weinkamer			17
	2.1	Introd	uction	17

RSC Smart Materials No. 4

Materials Design Inspired by Nature: Function through Inner Architecture Edited by Peter Fratzl, John W. C. Dunlop and Richard Weinkamer © The Royal Society of Chemistry 2013

Published by the Royal Society of Chemistry, www.rsc.org

X	Contents

	2.2	Mechano Transduction in Bone	20				
		2.2.1 Bone (Re)Modelling and the Effector Cell					
		Response	20				
		2.2.2 Mechanical–Biochemical Coupling	21				
		2.2.3 Signal Transmission	22				
	2.3	The Mechanical Loading of Bone in the Living					
		Organism	25				
	2.4	The Structural Response of Bone: Controlled Animal					
		Experiments	28				
	2.5	In Silico Experiments of the Control of					
		Bone Remodelling	31				
	2.6	The Inversion of Wolff's Law: Conclusions on					
		Locomotor Behaviour	34				
	2.7	Conclusions and Outlook	35				
	Ack	nowledgements	36				
	Refe	erences	37				
Chapter 3	Und	erstanding Hierarchy and Functions of Bone Using					
		nning X-ray Scattering Methods	46				
		fgang Wagermaier, Aurelien Gourrier and					
	Bari	Barbara Aichmayer					
	3.1	Introduction	46				
		3.1.1 Motivation and Objective	46				
		3.1.2 X-ray Scattering Applied to the Study of					
		Biological Materials	47				
		3.1.3 Bone as a Model for a Hierarchically					
		Structured Material	48				
	3.2	Bone Materials at the Nanoscale	49				
		3.2.1 Basic Principles of X-ray Scattering	49				
		3.2.2 Nanocrystal Structure in Bone: WAXS	50				
		3.2.3 Mineral Particle Size and Organization in the					
		Collagen Matrix: SAXS	52				
		3.2.4 SAXS and WAXS of Precursor Phases Found	5.0				
	2 2	in Bone	56				
	3.3	Understanding Specific Bone Functions by					
		Investigating the Nanostructure in Combination with					
		other Methods	57				
		3.3.1 Multi-Scale and Multi-physics Approach	57				
		3.3.2 Combining X-ray Scattering and Mechanical	50				
	2.4	Testing	59				
	3.4	Revealing the Nanoscale Properties of Bone Tissues					
		and Organs: Scanning SAXS/WAXS Imaging	61				
		3.4.1 Probing Hierarchy by Scanning	61				

Contents	xi	

Contents			AI
	3.4.2	Digital Image Processing of q-sSAXSI	67
	3.4.3	Scanning versus Full-field SAXS Imaging	69
	References	= 1 =	70
CI	4.1	The American	
Chapter 4		ransmission Electron Microscopy to ly Stages of Bio(mimetic)mineralization	74
		and Nico A. J. M. Sommerdijk	/ 🗝
	Archan Dey	and Nico A. J. M. Sommerays	
	4.1 Introd	uction: from Biomineralization to Biomimetic	
	Materi	ials Science	74
	4.1.1	Mechanisms of Biomineralization	76
	4.1.2	Bio(mimetic)mineralization	76
	4.1.3		
		Bio(mimetic)mineralization	80
		ced Transmission Electron Microscopy	83
	4.2.1	Electron Diffraction and High-resolution	
		Lattice Imaging	83
	4.2.2	1	85
		Electron Tomography	85
	4.2.4	, ,	86
		ation to Bio(mimetic)mineralization	87
	4.3.1	Monitoring the Biomimetic Formation	
		of Calcium Carbonate	87
	4.3.2	Mineralization Pathways in Calcium	0.1
	44 5	Phosphate	91
		Perspectives of Advanced Transmission	0.5
		on Microscopy	96
	4.4.1	High-resolution Lattice Imaging in Cryogenic	0.6
		Transmission Electron Microscopy	96
		1	98
	4.5 Conclu		99
	Acknowledg	gement	100
	References		101
Chapter 5	-	sed Materials for Tissue Repair, from	
		to Biomimetic	107
	M. M. Gira	ud Guille, N. Nassif and F. M. Fernandes	
	5.1 Introdu	uction	107
		en: Ambiguities and Goals	108
	5.2.1	Terminology	108
			110
		Handling Collagen in Vitro	110
		Structure-Function Relationships	112

xii	Contents

		 5.3.1 Collagen Sponges 5.3.2 Collagen Hydrogels 5.3.3 Cross-linked Collagen Matrices and Application Forms 5.3.4 Collagen-based Composites Anisotropic Architecture of Fibrils 5.4.1 Biomimetic Networks 5.4.2 Dense Collagen Films and Patchwork of Dense Matrices 	112 112 114 115 115 119 119 120 122 122 122
Chapter 6		terials Design Inspired by Tree and Wood Architecture o Burgert	128
	6.1 6.2	Introduction Trees and Wood as Biological Concept	128
	()	Generators	129
	6.3	Source of Bio-inspiration along the Hierarchical	120
		Organization of Wood 6.3.1 Process of Cell Wall Formation	130
		6.3.2 Composite Design of Cell Wall Architecture	131 133
		6.3.3 Cell Wall Pre-stresses and Reaction Wood 6.3.4 Wood Tissues: Optimized Lightweight	136
		Structures	138
	6.4	Bio-inspiration from Adaptive Growth	138
		6.4.1 Adaptation of Geometry	139
		6.4.2 Adaptation of Inner Architecture (Wood) 6.4.3 Inter-relation of Tree Geometry and Material	140
	6.5	Adaptation Wood: from Biological Material to Engineering	141
	0.5	Material	142
		6.5.1 Improving Wood Performance	143
		6.5.2 Biomimetic Approaches	143
	Refe	erences	145
	TCT	or one of the original and the original	145
Chapter 7	Stru	nan Microscopy: Insights into the Chemistry and acture of Biological Materials Gierlinger, C. Reisecker, S. Hild and S. Gamsjaeger	151
	7.1	Introduction	151

Contents xiii

7.2	Basic	Principles and Instrumentation	152
	7.2.1	Techniques for Signal Enhancement and	
		Circumvention of Fluorescence: Resonance	
		Raman Spectroscopy, Surface-enhanced	
		Raman Spectroscopy and Coherent	
		Anti-stokes Scattering	154
	7.2.2	Spatial Resolution and Tip-enhanced Raman	
		Spectroscopy	154
	7.2.3		155
	7.2.4	Processing of Raman Spectra and Image	
		Generation	156
	7.2.5	Interpretation of Raman Spectra: Structure,	
		Arrangement and Deformation of	
		Molecules	158
7.3	Insigh	nts into Cellulosic Materials: Plants, Fibres	
	and C	Composites	159
	7.3.1	Raman Spectra of Plant Cell Wall	
		Polymers	159
	7.3.2	Imaging Plant Cell Wall Composition in	
		Context with Structure	161
	7.3.3	Cellulose Fibres and Composites under Load	163
7.4		gical Chitin Nanocomposites and	
		ineralization	163
	7.4.1		105
	7.1.1	Amorphous Calcium Carbonate	164
	742	Revealing the Composition of the Cuticle	107
	7	of Two Different Isopod Species Living in	
		Different Habitats by Raman Imaging	166
	7.4.3		100
	7.7.5	White Spot Formation and Deformation	168
7.5	Flucio	lating the Structure of Proteins and	100
1.5		anisms of Hardening	168
	7.5.1		100
	7.5.1	Molecular Structure of Spider Silk Proteins	1.60
	750		168
		Keratinous Proteins in Human Hairs	169
	7.5.3	Hardening of Byssal Threads by	170
76	Tanda	Catecholato-iron Chelate Complexes	170
7.6		on and Bone: Probing Composition, Collagen	1.70
		tation and Deformation	170
	7.6.1	Raman Spectra of Bone: Orientation Versus	
	7.0	Composition	171
77	7.6.2	Bone and Tendons under Mechanical Load	172
7.7		usions and Outlook	173
		gements	173
Kete	erences		173

xiv Contents

Chapter 8	The Mineralized Crustacean Cuticle: Hierarchical Structure and Mechanical Properties Oskar Paris, Markus A. Hartmann and Gerhard Fritz-Popovski			
	8.1	Introduction	180	
	8.2	Structure of Crustacean Cuticle	182	
		8.2.1 Hierarchical Structure of the Unmineralized		
		Cuticle	182	
		8.2.2 Moulting and Mineralization	183	
		8.2.3 Hierarchical Structure of the Mineralized		
		Cuticle	184	
	8.3	Mechanical Properties	187	
		8.3.1 Mechanical Properties of the Single		
		Constituents	188	
		8.3.2 Crustacean Cuticle as a Gradient Material	189	
		8.3.3 The Influence of Mineralization on Mechanical	100	
		Properties	190	
		8.3.4 The Role of Water	192	
	8.4	8.3.5 Cuticle Failure Mechanisms Conclusion and Outlook	193	
		erences	193 194	
Chapter 9	The Mai	Iti-scale Modelling of a Biological Material: Arthropod Exoskeleton rtin Friåk, Helge-Otto Fabritius, Svetoslav Nikolov, shal Petrov, Liverios Lymperakis, Christoph Sachs, elína Elstnerová, Jörg Neugebauer and Dierk Raabe	197	
	9.1	Introduction	197	
	9.2	Experimental Prerequisites	199	
		9.2.1 Determination of Structural Hierarchy	199	
		9.2.2 Determination of Mechanical Properties	201	
	9.3	water with at an expense of sale.	202	
		9.3.1 Concept of Representative Volume		
		Elements	203	
		9.3.2 Sub-nanoscale <i>Ab Initio</i> Modelling	205	
		9.3.3 Compositional Variations	207	
		9.3.4 Multi-scale Hierarchical Methods	208	
		9.3.5 Structural Variations	212	
	9.4	Conclusions and Outlook	213	
	9.5	Appendix: Ab Initio Methods	215 216	
	Acknowledgements			
	Refe	erences	216	

Contents	XV
----------	----

Chapter 10 Optical Biomimetics Andrew R. Parker			219	
	10.1			219
	10.2		olution and Variety of Natural Photonic	220
	10.0	Devices		220
	10.3		ering of Anti-reflectors	222
	10.4		ering of Iridescent Devices	223
	10.5 10.6	Cell Cu		226 227
	10.6		as and Coccolithophores	231
	10.7		echanisms of Natural Engineering and Future	231
	10.0	Researce		232
	Ackn	owledge		233
		ences	ments	233
	Refer	CHCCS		233
Chapter 11	40		oparticles in Bacteria	235
	Mari	a Antoni	etta Carillo, Peter Vach and Damien Faivre	
	11.1	Introdu	ection	235
	11.2			200
		Magnetotactic Bacteria		237
	11.3		ructure of Magnetosomes	238
	11.4		cosome Size and Morphology	239
		11.4.1	Magnetosome Membrane and Protein	
			Sorting	239
		11.4.2	Control of Magnetosome Size	242
		11.4.3	Control of Magnetosome Morphology	243
		11.4.4	Effect of Size and Morphology on	
			Magnetism	244
	11.5	Magnet	osome Chain	246
		11.5.1	Biological Determinants of Chain Formation	246
		11.5.2	Magnetism of Magnetic Particles Organized	
			in a Chain	248
			Magnetotaxis	249
	11.6	Conclus		250
		owledger	nents	250
	Refer	ences		250
CI	***	11 17	hadda Amarika an Dada Sarah	255
Chapter 12			Protein Assemblies as a Basis for Materials and Thomas Scheibel	256
	12.1	Introdu	ction	256
			orporeal Hierarchical Fibres	257

XV1	Contents

	12.3	Silks		257
		12.3.1	Basic Silk Protein Nomenclature and	
			Architecture	259
	12.4	Single F	Protein Silk Fibres	260
		12.4.1	Flagelliform Silk	260
		12.4.2	Aciniform Silk	262
	12.5		e Protein Silks	262
		12.5.1	Lacewing Egg Stalk Silk	263
			Major Ampullate Silk	264
		12.5.3	Lepidoptera, Trichoptera: Moths, Butterflies	
			and Caddisflies	267
			Bee/Hornet/Vespid Silk	270
	12.6		emponent Fibres	272
	12.7		lagelliform Silk and Cribellate Silk	273
			d Keratins	274
		Conclus		277 277
		Acknowledgement		
	Refer	ences		277
Chanter 13	Anti-	adhesive !	Surfaces in Plants and Their Biomimetic	
Chapter 13		Potential		
	-	Elena V. Gorb and Stanislav N. Gorb		
		Introdu		282
	13.2		nent Devices in Insects	283
	13.3		hesive Plant Surfaces	284
			and the state of t	284
			Trichomes	286
			Wet Coverage	288
			Cuticular Folds	290
			Epicuticular Wax Crystals	292
			Hierarchical Plant Surfaces	301
	13.4		etic Potential	303
	Acknowledgements			304
	Refer	ences		304
Chapter 14	Bio-ir	spired A	dhesive Surfaces: From Principles to	
	Applications			310
	Elmar Kroner and Eduard Arzt			
	14.1	Introdu	ction	310
	14.2	Gecko A	Adhesion: a Journey through Time	311
	14.3		on System of Geckos	312
	14.4		anding the Gecko Adhesion System	313
	14.5		of Gecko Adhesion	314